Matemática, perguntado por the100forever123874, 6 meses atrás

4x ^ 2 - 10x + 10 = 0​

Soluções para a tarefa

Respondido por CyberStudy
0

Resposta:

x=\frac{5}{4}+i\frac{\sqrt{15}}{4} ou \:x=\frac{5}{4}-i\frac{\sqrt{15}}{4}

Explicação:

4x^2-10x+10=0

x_{1,\:2}=\frac{-\left(-10\right)\pm \sqrt{\left(-10\right)^2-4\cdot \:4\cdot \:10}}{2\cdot \:4}

x_{1,\:2}=\frac{-\left(-10\right)\pm \:2\sqrt{15}i}{2\cdot \:4}

x_1=\frac{-\left(-10\right)+2\sqrt{15}i}{2\cdot \:4},\:x_2=\frac{-\left(-10\right)-2\sqrt{15}i}{2\cdot \:4}

x = \frac{-\left(-10\right)-2\sqrt{15}i}{2\cdot \:4}:\frac{5}{4}-\frac{\sqrt{15}}{4}i

x=\frac{5}{4}+i\frac{\sqrt{15}}{4} ou \:x=\frac{5}{4}-i\frac{\sqrt{15}}{4}

Espero ter ajudado!

Perguntas interessantes