Matemática, perguntado por dheysonsilvaaumeida, 10 meses atrás

4°) Determine o oitavo termo da P.A. (6, 13, 20....)
(Dado: a, = a, +(n-1).r).​

Soluções para a tarefa

Respondido por viniciusszillo
2

Olá! Segue a resposta com algumas explicações.

(I)Interpretação do problema:

Da sequência (6, 13, 20,...), tem-se que:

a)cada elemento nela presente, exceto o primeiro, será o resultado do imediatamente anterior adicionado a um mesmo valor, a saber, 7 unidades (por exemplo, 13=6+7 e 20=13+7). Se um comportamento deste tipo acontece (soma de um mesmo valor para formar os termos seguintes), tem-se uma sequência numérica especial, denominada progressão aritmética (P.A.).

b)progressão aritmética é uma sequência numérica em que cada termo, à exceção do primeiro, é o resultado do antecessor acrescido (somado) de um valor constante, chamado de razão;

c)primeiro termo (a₁), ou seja, o termo que ocupa a primeira posição: 6

d)oitavo termo (a₈): ?

e)número de termos (n): 8

  • Justificativa: Embora a PA seja infinita, para o cálculo de um determinado termo, é feito um "corte" nesta PA infinita, de modo a considerar a posição que o termo ocupa (no caso, 8ª), equivalente ao número de termos.

f)Embora não se saiba o valor do oitavo termo, apenas pela observação dos dois primeiros termos da progressão fornecida, pode-se afirmar que a razão será positiva (afinal, os valores dos termos crescem, afastam-se do zero, à direita deste, pensando-se na reta numérica e, para que isto aconteça, necessariamente se deve somar um valor constante positivo, a razão, a um termo qualquer) e o termo solicitado igualmente será maior que zero, haja vista que o terceiro termo é positivo e a ele e aos próximos será sempre somado um valor positivo.

===========================================

(II)Determinação da razão (r) da progressão aritmética:

Observação: A razão (r), valor constante utilizado para a obtenção dos sucessivos termos, será obtida por meio da diferença entre um termo qualquer e seu antecessor imediato.

r = a₂ - a₁ ⇒  

r = 13 - 6 ⇒

r = 7    (Razão positiva, conforme prenunciado no item f acima.)

===========================================

(III)Aplicação das informações fornecidas pelo problema e da razão acima obtida na fórmula do termo geral (an) da P.A., para obter-se o oitavo termo:

an = a₁ + (n - 1) . r ⇒

a₈ = a₁ + (n - 1) . (r) ⇒

a₈ = 6 + (8 - 1) . (7) ⇒  

a₈ = 6 + (7) . (7) ⇒         (Veja a Observação 2.)

a₈ = 6 + 49 ⇒

a₈ = 55

Observação 2:  Foi aplicada na parte destacada a regra de sinais da multiplicação: dois sinais diferentes, +x+ ou -x-, resultam sempre em sinal de positivo (+).

RESPOSTA: O oitavo termo da P.A. (6, 13, 20, ...) é 55.

====================================================  

VERIFICAÇÃO DE QUE A RESPOSTA ESTÁ CORRETA

→Substituindo a₈ = 55 fórmula do termo geral da P.A. e omitindo, por exemplo, o primeiro termo (a₁), verifica-se que o valor correspondente a ele será obtido nos cálculos, confirmando-se que o oitavo termo realmente corresponde ao afirmado:

an = a₁ + (n - 1) . r ⇒

a₈ = a₁ + (n - 1) . (r) ⇒

55 = a₁ + (8 - 1) . (7) ⇒

55 = a₁ + (7) . (7) ⇒

55 = a₁ + 49 ⇒

55 - 49 = a₁ ⇒  

6 = a₁ ⇔              (O símbolo ⇔ significa "equivale a".)

a₁ = 6                   (Provado que a₈ = 55.)

→Veja outras tarefas relacionadas à determinação de termos em sequências do tipo progressão aritmética e resolvidas por mim:

https://brainly.com.br/tarefa/12963811

brainly.com.br/tarefa/27973357

brainly.com.br/tarefa/29994834

brainly.com.br/tarefa/29841264

brainly.com.br/tarefa/1685055


viniciusszillo: Se houver ficado alguma dúvida sobre a resolução acima, estou à sua disposição para esclarecê-la.
Perguntas interessantes