4- um dado não viciado é arremessado. qual é a possibilidade de sair:a- o número 5b- um número ímparc- um número menor que 4d- um número pare- um número maior que 4f- um número primo
Soluções para a tarefa
a) o número 5 é 1 lado em 6, portanto a probabilidade será
1/6 = 16,67%
b) Temos 3 ímpares (1, 3, 5) em 6 possíveis, portanto a probabilidade será
3/6 = 1/2 = 50%
c) Temos 3 menores que 4 (1, 2, 3) em 6 possíveis, portanto a probabilidade será
3/6 = 1/2 = 50%
d) Temos 3 pares (2, 4, 6) em 6, portanto a probabilidade será
3/6 = 1/2 = 50%
e) Temos 2 maiorees que 4 (5, 6) em 6 possíveis, portanto a probabilidade será
2/6 = 1/3 = 33,33%
c) Temos 3 primos (2, 3, 5) em 6 possíveis, portanto a probabilidade será
3/6 = 1/2 = 50%
Calculando as probabilidades, encontramos:
a) 1/6 ou 16,67% b) 1/2 ou 50% c) 1/2 ou 50%
d) 1/2 ou 50% e) 1/3 ou 33,33% f) 1/2 ou 50%
Para respondermos essa questão, vamos relembrar como se calcula a probabilidade
A probabilidade é calculada pelo possível evento dividido pelo espaço amostral.
O evento é aquilo que queremos que realmente aconteça.
O espaço amostral são todas as possibilidades que podem acontecer.
Teríamos então que a probabilidade é calculada pela fórmula geral:
P (A) = Evento / Espaço Amostral
A questão nos pede para determinarmos algumas probabilidades.
Com isso, vamos analisar cada alternativa separadamente.
a) Sair o número 5
O evento será o número 5. Com isso:
Evento = 5
O espaço amostral são as faces do dado. Com isso:
Espaço amostral = 6
Portanto, fica:
P(A) = 1/6 ou 16,67%
b) Sair um número ímpar
O evento será os números ímpares. Com isso:
Evento = (1, 3, 5) = 3
O espaço amostral são as faces do dado. Com isso:
Espaço amostral = 6
Portanto, fica:
P(A) = 3/6
P(A) = 1/2 ou 50%
c) Sair um número menor que 4
O evento será os números ímpares. Com isso:
Evento = (1, 2, 3) = 3
O espaço amostral são as faces do dado. Com isso:
Espaço amostral = 6
Portanto, fica:
P(A) = 3/6
P(A) = 1/2 ou 50%
d) Sair um número par
O evento será os números ímpares. Com isso:
Evento = (2, 4, 6) = 3
O espaço amostral são as faces do dado. Com isso:
Espaço amostral = 6
Portanto, fica:
P(A) = 3/6
P(A) = 1/2 ou 50%
e) Sair um número maior que 4
O evento será os números ímpares. Com isso:
Evento = (5,6 ) = 2
O espaço amostral são as faces do dado. Com isso:
Espaço amostral = 6
Portanto, fica:
P(A) = 2/6
P(A) = 1/3 ou 33,33%
f) Sair um número primo
O evento será os números ímpares. Com isso:
Evento = (2, 3, 5) = 3
O espaço amostral são as faces do dado. Com isso:
Espaço amostral = 6
Portanto, fica:
P(A) = 3/6
P(A) = 1/2 ou 50%
Aprenda mais em: https://brainly.com.br/tarefa/40025525