Matemática, perguntado por luisrodrigues43, 1 ano atrás

4 elevado a x + 6 elevado a x = 9 elevado a x
Qual o valor de x?

Soluções para a tarefa

Respondido por auditsys
6

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\sf{4^x + 6^x = 9^x}

\sf{\dfrac{4^x}{4^x} + \dfrac{6^x}{4^x} = \dfrac{9^x}{4^x}}

\sf{1 + \left(\dfrac{6}{4}\right)^x = \left(\dfrac{9}{4}\right)^x}

\sf{1 + \left(\dfrac{3}{2}\right)^x = \left(\dfrac{3}{2}\right)^{2x}}

\sf{\left(\dfrac{3}{2}\right)^{2x} - \left(\dfrac{3}{2}\right)^x - 1 = 0}

\sf{y = \left(\dfrac{3}{2}\right)^x}

\sf{y^2 - y - 1 = 0}

\sf{\Delta = b^2 - 4.a.c}

\sf{\Delta = (-1)^2 - 4.1.(-1)}

\sf{\Delta = 1 + 4}

\sf{\Delta = 5}

\sf{y = \dfrac{-b \pm \sqrt{\Delta}}{2a} = \dfrac{1 \pm \sqrt{5}}{2} \rightarrow \begin{cases}\sf{y' = \dfrac{1 + \sqrt{5}}{2}}\\\\\sf{y'' = \dfrac{1 - \sqrt{5}}{2}}\end{cases}}

\mathsf{\left(\dfrac{3}{2}\right)^x = \dfrac{1 + \sqrt{5}}{2}}

\Large \boxed{\boxed{\sf{x = log_{\frac{3}{2}}\left(\dfrac{1 + \sqrt{5}}{2}\right)}}}

Perguntas interessantes