Matemática, perguntado por desanimadokk, 10 meses atrás

3)Utilizando os casos especiais determine o valor de: (Com cálculo se possível)

Anexos:

Soluções para a tarefa

Respondido por Usuário anônimo
0

Explicação passo-a-passo:

De modo geral:

\sf \dbinom{n}{n}=\dbinom{n}{0}=1

\sf \dbinom{n}{1}=\dbinom{n}{n-1}=n

\sf \dbinom{n}{k}=\dfrac{n!}{k!\cdot(n-k)!}

a) \sf \dbinom{7}{7}=1, pois:

\sf \dbinom{7}{7}=\dfrac{7!}{7!\cdot(7-7)!}

\sf \dbinom{7}{7}=\dfrac{7!}{7!\cdot0!}

\sf \dbinom{7}{7}=1

b) \sf \dbinom{5}{0}=1, pois:

\sf \dbinom{5}{0}=\dfrac{5!}{0!\cdot(5-0)!}

\sf \dbinom{5}{0}=\dfrac{5!}{0!\cdot5!}

\sf \dbinom{5}{0}=1

c) \sf \dbinom{27}{1}=27, pois:

\sf \dbinom{27}{1}=\dfrac{27!}{1!\cdot(27-1)!}

\sf \dbinom{27}{1}=\dfrac{27!}{1!\cdot26!}

\sf \dbinom{27}{1}=\dfrac{27\cdot26!}{26!}

\sf \dbinom{27}{1}=27

d) \sf \dbinom{30}{29}=30, pois:

\sf \dbinom{30}{29}=\dfrac{30!}{29!\cdot(30-29)!}

\sf \dbinom{30}{29}=\dfrac{30!}{29!\cdot1!}

\sf \dbinom{30}{29}=\dfrac{30\cdot29!}{29!}

\sf \dbinom{30}{29}=30

Perguntas interessantes