Matemática, perguntado por Het11, 10 meses atrás

3. Seja a função f, de R em R, definida f(x) = 2x2 – 24x +1. O valor mínimo de f é: a) 73 b) 71 c) –71 d) –73 e) –79

Anexos:

Soluções para a tarefa

Respondido por carolina5711
3

Resposta:

Letra C

Explicação passo-a-passo:

Como na função dada, o coeficiente a assume valor positivo, a concavidade é para cima e adota valor mínimo. Para achar esse valor, temos que saber o valor que x do vértice assume:

xv =  \frac{ - b}{2a}  =  \frac{24}{4}  = 6

Agora é só substituir:

f(x) = 2 {x}^{2}  - 24x + 1 \\ f(6) = 2 \times  {6}^{2}  - 24 \times 6 + 1 \\ f(6) = 72 - 144 + 1 \\ f(6) =  - 71

Espero ter ajudado!

Perguntas interessantes