3. Calcule a moda ea mediana de cada seguintes conjuntos de valores
: a)9,8,8,7,10,12,11,8,8,7,6,14,10 b)0,0,0,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3 c)40,44,42,23,36,40 ajudem aí por favor
Soluções para a tarefa
Resposta:
A) moda=8 pois aparece 4 vezes
Mediana= colocaremos em ordem crescente. Assim, o conjunto de dados ficará:
6,7,7,8,8,8,8,9,10,10,11,12,14
E como é formado por 13 elementos o 8 é a Mediana pois ela fica no meio [6,7,7,8,8,8--8--9,10,10,11,12,14]
B) 0,0,0,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3
Moda=3
Mediana= 2+2=4÷2=2 pois tem 18 elementos então peguei os dois termos centrais e dividi por 2
C) 23,36,40,40,42,44
Moda=40
Mediana=40+40÷2=40
Explicação passo-a-passo:
O que é moda? A Moda (Mo) representa o valor mais frequente de um conjunto de dados, sendo assim, para defini-la basta observar a frequência com que os valores aparecem.
Um conjunto de dados é chamado de bimodal quando apresenta duas modas, ou seja, dois valores são mais frequentes.
Exemplo
Em uma sapataria durante um dia foram vendidos os seguintes números de sapato: 34, 39, 36, 35, 37, 40, 36, 38, 36, 38 e 41. Qual o valor da moda desta amostra?
Solução
Observando os números vendidos notamos que o número 36 foi o que apresentou maior frequência (3 pares), portanto, a moda é igual a:
Mo = 36
O que é Mediana?
Mediana
A Mediana (Md) representa o valor central de um conjunto de dados. Para encontrar o valor da mediana é necessário colocar os valores em ordem crescente ou decrescente.
Quando o número elementos de um conjunto é par, a mediana é encontrada pela média dos dois valores centrais. Assim, esses valores são somados e divididos por dois.
Exemplos
1) Em uma escola, o professor de educação física anotou a altura de um grupo de alunos. Considerando que os valores medidos foram: 1,54 m; 1,67 m, 1,50 m; 1,65 m; 1,75 m; 1,69 m; 1,60 m; 1,55 m e 1,78 m, qual o valor da mediana das alturas dos alunos?
Solução
Primeiro devemos colocar os valores em ordem. Neste caso, colocaremos em ordem crescente. Assim, o conjunto de dados ficará:
1,50; 1,54; 1,55; 1,60; 1,65; 1,67; 1,69; 1,75; 1,78
Como o conjunto é formado por 9 elementos, que é um número ímpar, então a mediana será igual ao 5º elemento, ou seja:
Md = 1,65 m
2) Calcule o valor da mediana da seguinte amostra de dados: (32, 27, 15, 44, 15, 32).
Solução
Primeiro precisamos colocar os dados em ordem, assim temos:
15, 15, 27, 32, 32, 44
Como essa amostra é formada por 6 elementos, que é um número par, a mediana será igual a média dos elementos centrais, ou seja:
27+32÷2=29,5