3. Aplicando o método da ADIÇÃO, resolva os seguintes sistemas:
Soluções para a tarefa
Resposta:
x = 4 e y = 1
Explicação passo a passo:
Vamos organizar primeiramente as equações em ordem de maiores valores:
2x + y = 9
x - y = 3
Lembre-se que no ensino médio, adição significa juntar dois termos ou números, e não fazer cálculos com o sinal positivo.
Então, juntando as equações com seus termos, fica:
2x + x = 3x
y - y = 0
9 + 3 = 12
3x = 12
x = 12/3
x = 4
Temos o valor de x, agora, iremos substituir o valor de x nas primeiras equações e verificar o valor de y:
4 -y =3
-y = -4+3
-y = -1 .(-1)
y = 1
e agora na segunda:
2.(4) + y = 9
8 + y = 9
y = 9-8
y = 1
Logo, confirmamos que x = 4 e y = 1 com o método da adição
Resposta:
. s = {(X, Y)} = {(4, 1)}
Explicação passo a passo:
.
. Resolver por adição
.
. x - y = 3
. 2x + y = 9 (soma as duas equações)
.
==> 2x + x - y + y = 3 + 9
. 3x + 0 = 12
. 3x = 12
. x = 12 : 3
. x = 4 x - y = 3 (x = 4)
. 4 - y = 3
. - y = 3 - 4
. - y = - 1 (- 1)
. y = 1
.
(Espero ter colaBORADO)