Matemática, perguntado por savioad03gmailcom, 6 meses atrás

2-) Determine o Baricentro dos Triângulos de Vértices :
a-) A( 2, 5) ,B( 4, 6) e C ( 9, 4)
b-) A( 0, 7) , B ( 2, -5 ) e C (13, 13)

Soluções para a tarefa

Respondido por rhydia
14

a. G (5, 5)

gx =  \frac{2 + 4 + 9}{3}  =  \frac{15}{3}  = 5

gy =  \frac{5 + 6 + 4}{3}  =  \frac{15}{3}  = 5

b. G (5, 5)

gx =  \frac{0 + 2 + 13}{3}  =  \frac{15}{3}  = 5

gy =  \frac{7  - 5 + 13}{3}  =  \frac{15}{ 3 }  = 5


CyberKirito: Show de bola
rhydia: obrigada :)
fernanda1987cunha: obrigado
rhydia: por nada ❤️❤️❤️
Respondido por CyberKirito
13

\Large\boxed{\begin{array}{l}\sf Seja~A(x_A,y_A),B(x_B,y_B)~e~C(x_C,y_C)\\\sf as~coordenadas~de~um~tri\hat angulo\\\sf qualquer~no~plano~cartesiano.\\\sf O~baricentro~G(x_G,y_G)~deste~tri\hat angulo~\acute e~dado~por\\\sf x_G=\dfrac{x_A+x_B+x_C}{3}~e~y_G=\dfrac{y_A+y_B+y_C}{3}\end{array}}

\Large\boxed{\begin{array}{l}\tt a)~\sf A(2,5),B(4,6)~e~C(9,4)\\\sf x_G=\dfrac{2+4+9}{3}=\dfrac{15}{3}=5\\\\\sf y_G=\dfrac{5+6+4}{3}=\dfrac{15}{3}=5\\\sf G(5,5)\end{array}}

\large\boxed{\begin{array}{l}\tt b)~\sf A(0,7),B(2,-5)~e~C(13,13)\\\sf x_G=\dfrac{0+2+13}{3}=\dfrac{15}{3}=5\\\\\sf y_G=\dfrac{7-5+13}{3}=\dfrac{15}{3}=5\\\sf G(5,5)\end{array}}

Anexos:
Perguntas interessantes