Matemática, perguntado por wakaranaidesu, 5 meses atrás

2.cos²x-cosx=0 [0 ; 2Pi]

alternativas:

A) Pi/2 (ou era Pi/3)
B) 2Pi
C) 3Pi
D) 0
E) 4Pi​


wakaranaidesu: se não me engano, era para fazer soma das soluções

Soluções para a tarefa

Respondido por yanaood98
1

Resposta:

a resposta seria a A se fosse pi/3

Explicação passo-a-passo:

primeiro vamos "passar" o cosx para o lado direito:

2cos²x=cosx

dividindo a equação por cosx, teremos:

2cosx=1

cosx=½

o ângulo em que o cosseno vale ½ é 60° ou pi/3 rad


yanaood98: só que é estranho, pq não tem alternativas, outro ângulo ângulo que o cosseno é zero é em 3pi/2
wakaranaidesu: eu cabei entendendo, como tem 0 e 1/2, que são 90 grau e 60 grau, ainda tem 270 grau e 300 grau
wakaranaidesu: somando eles em radiano, daria 4pi
wakaranaidesu: pi/3+pi/2+3pi/2+5pi/3
wakaranaidesu: daria 24pi/6, e no final daria 4pi
yanaood98: amigo, mas em 300 graus o cosseno nao é zero, no intervalo entre 0 e 2pi, o cosseno só é zero em dois intervalos, que são pi/2 e 3pi/2. as soluções seriam somente três, a saber pi/2, pi/3 e 3pi/2. A soma das soluções deve ser 5pi/3, se consideramos esse intervalo de 0 a 2pi
wakaranaidesu: 300 grau é 60 grau no 4 quadrante, e é positivo
wakaranaidesu: 1/2 é do cos está no 1 quadrante e na 4
wakaranaidesu: na primeira como 60 e na quarta como 300
yanaood98: ah sim, pensei que vc estava tratando o 300 como um valor para o qual o cosseno é zero. Então tá tudo certo.
Perguntas interessantes