Matemática, perguntado por thainarauu2029, 3 meses atrás

2. Calcule a soma dos 25 primeiros termos de uma P.A. que tem a₁ = 3 er =4.​

Soluções para a tarefa

Respondido por ewerton197775p7gwlb
1

 >  \: resolucao \\  \\  \geqslant  \: progressao \:  \: aritmetica \\  \\ a1 = 3 \\ r = 4 \\  \\  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  \\  \\  \\  >  \: o \: 25 \: termo \: da \: pa \\  \\ an = a1 + (n - 1)r \\ an = 3 + (25 - 1)4 \\ an = 3 + 24 \times 4 \\ an = 3 + 96 \\ an = 99 \\  \\   =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  \\  \\  \\  >  \: soma \: dos \: termos \: da \: pa \\  \\  \\ sn =  \frac{(a1 + an)n}{2}  \\  \\ sn =  \frac{(3 + 99)25}{2}  \\  \\ sn =  \frac{102 \times 25}{2}  \\  \\ sn = 51 \times 25 \\  \\ sn = 1275 \\  \\  \\  \geqslant  \leqslant  \geqslant  \leqslant  \geqslant  \leqslant  \geqslant  \leqslant  \geqslant  \geqslant  \geqslant

Anexos:
Respondido por Math739
1

 \blue{\mathsf{a_n=a_1+(n-1)\cdot r} }

 \mathsf{a_{25}=3+(25-1)\cdot4 }

 \mathsf{ a_{25}=3+24\cdot4}

 \mathsf{a_{25}=3+96 }

 \mathsf{a_{25}=99 }

 \blue{\mathsf{S_n=\dfrac{(a_1+a_n)\cdot n}{2}} }

 \mathsf{ S_{25}=\dfrac{(3+99)\cdot25}{2}}

 \mathsf{ S_{25}=\dfrac{ 102\cdot25}{2}}

 \mathsf{S_{25}=51\cdot25 }

\red{ \mathsf{S_{25}= 1275} }

Perguntas interessantes