Matemática, perguntado por LucasJairo, 1 ano atrás

2) Calcule a seguinte integral definida:

 \int\limits^2_1 { \frac{v^3+3v^5}{v^4} } \, dv

Soluções para a tarefa

Respondido por gabrieldoile
1
Temos o seguinte:

 \int\limits^2_1 { \frac{v^3 + 3v^5}{v^4} } \, dv

Assim:

 \int { \frac{v^3 + 3v^5}{v^4} } \, dv =  \int { \frac{v^3}{v^4}  +  \frac{3v^5}{v^4} } \, dv = \int { \frac{1}{v}  +  3v } \, dv = \int { \frac{1}{v} } \, dv + \int {  3v } \, dv \\  \\ 
 \int { \frac{1}{v} } \, dv + \int {  3v } \, dv = ln(v) + 3 \cdot  \frac{v^2}{2} + C

Aplicando os limites:

(ln(v) + 3 \cdot  \frac{v^2}{2} )\limits^2_1 \\  \\ 
= (ln(2) + 3 \cdot  \frac{2^2}{2}) - (ln(1) + 3 \cdot  \frac{1^2}{2}  ) \\  \\ 
= (ln(2) + 6) - (0 +  \frac{3}{2} ) \\  \\ 
= ln(2) + 6 -  \frac{3}{2}  \\  \\ 
= ln(2) + \frac{9}{2}
Respondido por CyberKirito
0

\displaystyle\mathsf{\int\limits_{1}^{2}\dfrac{{v}^{3}+3{v}^{5}}{{v}^{4}}dv}\\\displaystyle\mathsf{\int\limits_{1}^{2}(\dfrac{1}{v}+3v)dv =\left[Ln|v|+\dfrac{3}{2}{v}^{2}\right]_{1}^{2} }

\mathsf{Ln(2)+\dfrac{3}{2}.{2}^{2}-(Ln(1)+\dfrac{3}{2}.{1}^{2})}\\=\mathsf{Ln(2)+\dfrac{12}{2}-\dfrac{3}{2}=Ln(2)+\dfrac{9}{2}}

Perguntas interessantes