13- Sabendo que cos x = 1/2 , calcule o valor da expressão E= cotg²x-1 / cossec² x+sec x.
Soluções para a tarefa
Resposta:
= - 1/5
Explicação passo-a-passo:
cos x = 1/2 , calcule o valor da expressão E= (cotg²x-1) / (cossec² x+sec x)
Cos x = 1/2
sen^2 x + cos^2 x = 1
sen^2 x + (1/2)^2 = 1
sen^2 x + 1/4 = 1
sen^2 x = 1 - 1/4
sen^2 x = (4-1)/4
sen^2 x = 3/4
sen x = √(3/4)
sen x = √3/2
Cos x = 1/2
E= (cotg²x-1) / (cossec² x+sec x)
cotg x = cos x/sen x
Cotg x = 1/2 : √3/2
Cotg x = 1/2 . 2/√3
Cotg x = 2/2 . 1/√3
Cotg x = 1/√3 . √3/√3
Cotg x = √3/3
Cossec x = 1/sen x
Cossec x = 1 :√3/2
Cossec x = 2/√3 . √3/√3
Cossec x = 2√3/3
Sec x = 1/cos x
Sec x = 1 : 1/2
Sec x = 1.2
Sec x = 2
E= (cotg²x-1) / (cossec² x+sec x)
E=[(√3/3)^2 - 1]/[(2√3/3)^2 + 2]
E = [A]/[B]
[A]
= (√3/3)^2 - 1
= 3/9 (:3)/(:3) - 1
= 1/3 - 1
= 1/3 - 3/3
= - 2/3
[B]
= (2√3/3)^2 + 2
= (4.3/9) + 2
= 12/9 (:3)/(:3) + 2
= 4/3 + 2
= (4+3.2)/3
= (4+6)/3
= 10/3
= A/B
= - 2/3 : 10/3
= - 2/3 . 3/10
= - 3/3 . 2/10 (:2)/(:2)
= - 1/5
R.: - 1/5