Matemática, perguntado por Lahra2020, 10 meses atrás

13. Os números A. B e C foram decompostos num produto de lateres primos
B-2x,5 ×7X11
C-3x5x112
A-2 x 3 x 5
Assim sendo, calcula:
a) m.d.c. (A,B)
d) mm.c. (A, B)
b)m.d.c. (AC)
e) m.m.c. (A.C
c) m.d.c. (A.B.C)
1) m.m.c. (BC)​

Soluções para a tarefa

Respondido por EduardOBMEP
3

a)

mdc(A,B) =

mdc(2\cdot3\cdot5  \;e\; 2\cdot5\cdot7\cdot11) =

 2\cdot5 = \fcolorbox{black}{green}{10}

d)

mmc(A,B) =

mmc(2\cdot3\cdot5 \;e\; 2\cdot5\cdot7\cdot11)=</p><p>

2 \times 3 \times 5 \times 7 \times 11 = \fcolorbox{black}{green}{2310}

b)

mdc(A,C) =

mdc(2\cdot3\cdot5 \;e\; 3\cdot5\cdot11²)=</strong></p><p><strong>[tex]mdc(2\cdot3\cdot5 \;e\; 3\cdot5\cdot11²)=

3 \times 5 = \fcolorbox{black}{green}{15}

e)

mmc(A,C) =

mmc(2\cdot3\cdot5 \;e\; 3\cdot5\cdot11²)=</strong></p><p><strong>[tex]mmc(2\cdot3\cdot5 \;e\; 3\cdot5\cdot11²)=

2 \times 3 \times 5 \times  {11}^{2}  = \fcolorbox{black}{green}{3630}

c)

mdc(A,B,C) =

mdc(2\cdot3\cdot5 \;e\; 2\cdot5\cdot7\cdot11 \;e\; 3\cdot5\cdot11²)=</strong></p><p><strong>[tex]mdc(2\cdot3\cdot5 \;e\; 2\cdot5\cdot7\cdot11 \;e\; 3\cdot5\cdot11²)=

 = \fcolorbox{black}{green}{5}

f)

mmc(B,C) =</strong></p><p><strong>[tex]mmc(B,C) =

mmc(2\cdot5\cdot7\cdot11 \;e\; 3\cdot5\cdot11²)=</strong></p><p><strong>[tex]mmc(2\cdot5\cdot7\cdot11 \;e\; 3\cdot5\cdot11²)=

2 \times 3 \times 5 \times 7 \times  {11}^{2}  = \fcolorbox{black}{green}{25410}

Bons estudos!

Perguntas interessantes