Matemática, perguntado por matmat86, 5 meses atrás

13) Encontre a equação da circunferência cujo centro é o ponto de interseção entre as retas x + 4y = 7 e 3x + y = -1 e o raio é igual a 3.​

Soluções para a tarefa

Respondido por tanakymoru
5

Resposta:

{x+1)² + {y-2)² = 9

Explicação passo a passo:

O ponto de intersecção entre as retas x + 4y = 7 e 3x + y = -1 corresponde a solução do sistema de equações:

[x+4y=7

|3x+y=1.

x + 4y =7⇒ x = 7 - 4y

Substituindo x por (7 - 4y) na segunda equação:

3x + y = -1 ⇒ 3. (7-4y) + y = -1 ⇒ 21 - 12y + y = -1 ⇒-11y = -1 -21 ⇒-11y = -22 ⇒ y = 22/11

⇒y=2

Então:

x = 7 - 4y⇒ x = 7 -4.2 ⇒ x = -1

Portanto, o ponto de intersecção é o ponto (-1,2).

Sabendo que esse é o centro da circunferência e que o raio é 3, a equação da circunferência é:

{x+1)² + {y-2)² = 9

Perguntas interessantes