Matemática, perguntado por guifraga2009, 1 ano atrás

11. (FGV) Aconteceu um acidente: a chuva molhou o papel onde Teodoro marcou o telefone de Aninha e apagou os três últimos algarismos. Restaram apenas os dígitos 58347. Observador, Teodoro lembrou que o número do telefone da linda garota era um número par, não divisível por 5 e que não havia algarismos repetidos. Apaixonado, resolveu testar todas as combinações numéricas possíveis. Azarado! Restava apenas uma possibilidade, quando se esgotaram os créditos do seu telefone celular. Até então, Teodoro havia feito:
a) 23 ligações
b) 59 ligações
c) 39 ligações
d) 35 ligações
e) 29 ligações

Soluções para a tarefa

Respondido por maddaturma
48
Se o número é par o último algarismo pode ser 0; 2; 4; 6; 8 

Como o número não é divisível por 5 o último algarismo não pode ser zero. 

Como não pode haver algarismo repetido o último algarismo também não pode ser nem 8 e nem 4. 

Logo o último algarismo só pode ser 2 ou 6. 

Assim os números podem ser: 

58347XY2 ou 58347XY6 

Em cada um desses números aparecem 6 algarismos. Como existem 10 algarismos então X pode assumir 4 valores e o Y apenas 3 valores(ou vice-versa) pois Y não pode ser igual a X. 

Então, 

para 58347XY2 existem 4 x 3 = 12 combinações. 

para 58347XY6 também existem 4 x 3 = 12 combinações. 

Total de combinações = 12 + 12 = 24 

Se restava apenas apenas uma possibilidade então ele havia feito 24 - 1 = 23 ligações. 

Resposta: alternativa (a) 23 ligações.

Perguntas interessantes