1) resolva os sistemas de duas equações aplicando a regra de cramer
[2x-3y = - 5
{x +2y = 8
b) {3x-2y= 5
{2 + y =1
Soluções para a tarefa
Respondido por
81
Resolvendo pela regra de Cramer:
Primeiro vamos reescrever o sistema em sua forma matricial
![\underbrace{$\begin{pmatrix}2~~~~-3\\1~~~~~~~2\end{pmatrix}$}_{matriz~incompleta}\hspace{-5}\cdot\begin{pmatrix}x\\y\end{pmatrix}=\hspace{-25}\underbrace{$\begin{pmatrix}-5\\~~8\end{pmatrix}$}_{termos~independentes} \underbrace{$\begin{pmatrix}2~~~~-3\\1~~~~~~~2\end{pmatrix}$}_{matriz~incompleta}\hspace{-5}\cdot\begin{pmatrix}x\\y\end{pmatrix}=\hspace{-25}\underbrace{$\begin{pmatrix}-5\\~~8\end{pmatrix}$}_{termos~independentes}](https://tex.z-dn.net/?f=%5Cunderbrace%7B%24%5Cbegin%7Bpmatrix%7D2%7E%7E%7E%7E-3%5C%5C1%7E%7E%7E%7E%7E%7E%7E2%5Cend%7Bpmatrix%7D%24%7D_%7Bmatriz%7Eincompleta%7D%5Chspace%7B-5%7D%5Ccdot%5Cbegin%7Bpmatrix%7Dx%5C%5Cy%5Cend%7Bpmatrix%7D%3D%5Chspace%7B-25%7D%5Cunderbrace%7B%24%5Cbegin%7Bpmatrix%7D-5%5C%5C%7E%7E8%5Cend%7Bpmatrix%7D%24%7D_%7Btermos%7Eindependentes%7D)
Se o determinante da matriz incompleta (chamaremos a matriz incompleta de A) for diferente de zero o sistema possuirá solução única.
Calculemos seu determinante:
![det~A=\begin{vmatrix}2~~~~-3\\1~~~~~~~2\end{vmatrix}=2\cdot2-(-3\cdot1)=4+3=7 \neq 0 det~A=\begin{vmatrix}2~~~~-3\\1~~~~~~~2\end{vmatrix}=2\cdot2-(-3\cdot1)=4+3=7 \neq 0](https://tex.z-dn.net/?f=det%7EA%3D%5Cbegin%7Bvmatrix%7D2%7E%7E%7E%7E-3%5C%5C1%7E%7E%7E%7E%7E%7E%7E2%5Cend%7Bvmatrix%7D%3D2%5Ccdot2-%28-3%5Ccdot1%29%3D4%2B3%3D7+%5Cneq+0)
Como o determinante de A é diferente de zero o sistema possui solução única.
Para descobrir os valores de x e y é feito o seguinte:
Para descobrir x substitui-se a primeira coluna da matriz A pela coluna dos termos independentes, em seguida calcula-se o determinante da matriz obtida de A, feito isso nós dividimos esse determinante pelo determinante da matriz A, o resultado disso é o valor de x.
![\fbox{$x=\dfrac{det~A'}{det~A}$} \fbox{$x=\dfrac{det~A'}{det~A}$}](https://tex.z-dn.net/?f=%5Cfbox%7B%24x%3D%5Cdfrac%7Bdet%7EA%27%7D%7Bdet%7EA%7D%24%7D)
Para encontrar y seguimos o mesmo processo, mas ao invés de substituirmos a primeira coluna da matriz A pelos termos independentes, nós substituímos a segunda coluna.
![\fbox{$y=\dfrac{det~A''}{det~A}$} \fbox{$y=\dfrac{det~A''}{det~A}$}](https://tex.z-dn.net/?f=%5Cfbox%7B%24y%3D%5Cdfrac%7Bdet%7EA%27%27%7D%7Bdet%7EA%7D%24%7D)
Portanto, vamos descobrir x e y.
![x=\dfrac{det~A'}{det~A}\\\\\\det~A'=\begin{vmatrix}-5~~~~~-3\\~~8~~~~~~~~~2\end{vmatrix}=(-5\cdot2)-(8\cdot-3)=-10+24=14\\\\\\x=\dfrac{14}{7}=2\\\\\\\\ y=\dfrac{det~A''}{det~A}\\\\\\det~A''=\begin{vmatrix}2~~~~-5\\1~~~~~~~8\end{vmatrix}=2\cdot8-(-5\cdot1)=16+5=21\\\\\\y=\dfrac{21}{7}=3\\\\\\\\S=\begin{Bmatrix}x=2\\\\y=3\end. x=\dfrac{det~A'}{det~A}\\\\\\det~A'=\begin{vmatrix}-5~~~~~-3\\~~8~~~~~~~~~2\end{vmatrix}=(-5\cdot2)-(8\cdot-3)=-10+24=14\\\\\\x=\dfrac{14}{7}=2\\\\\\\\ y=\dfrac{det~A''}{det~A}\\\\\\det~A''=\begin{vmatrix}2~~~~-5\\1~~~~~~~8\end{vmatrix}=2\cdot8-(-5\cdot1)=16+5=21\\\\\\y=\dfrac{21}{7}=3\\\\\\\\S=\begin{Bmatrix}x=2\\\\y=3\end.](https://tex.z-dn.net/?f=x%3D%5Cdfrac%7Bdet%7EA%27%7D%7Bdet%7EA%7D%5C%5C%5C%5C%5C%5Cdet%7EA%27%3D%5Cbegin%7Bvmatrix%7D-5%7E%7E%7E%7E%7E-3%5C%5C%7E%7E8%7E%7E%7E%7E%7E%7E%7E%7E%7E2%5Cend%7Bvmatrix%7D%3D%28-5%5Ccdot2%29-%288%5Ccdot-3%29%3D-10%2B24%3D14%5C%5C%5C%5C%5C%5Cx%3D%5Cdfrac%7B14%7D%7B7%7D%3D2%5C%5C%5C%5C%5C%5C%5C%5C+y%3D%5Cdfrac%7Bdet%7EA%27%27%7D%7Bdet%7EA%7D%5C%5C%5C%5C%5C%5Cdet%7EA%27%27%3D%5Cbegin%7Bvmatrix%7D2%7E%7E%7E%7E-5%5C%5C1%7E%7E%7E%7E%7E%7E%7E8%5Cend%7Bvmatrix%7D%3D2%5Ccdot8-%28-5%5Ccdot1%29%3D16%2B5%3D21%5C%5C%5C%5C%5C%5Cy%3D%5Cdfrac%7B21%7D%7B7%7D%3D3%5C%5C%5C%5C%5C%5C%5C%5CS%3D%5Cbegin%7BBmatrix%7Dx%3D2%5C%5C%5C%5Cy%3D3%5Cend.)
De modo análogo vamos resolver o segundo sistema:
![\underbrace{$\begin{pmatrix}3~~~~-2\\2~~~~~~~1\end{pmatrix}$}_{A}\cdot\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix}5\\1\end{pmatrix}\\\\\\\\det~A=\begin{vmatrix}3~~~~-2\\2~~~~~~~1\end{vmatrix}=3\cdot1-(-2\cdot2)=3+4=7 \neq 0\\\\\\\\x=\dfrac{det~A'}{det~A}\\\\\\\\det~A'=\begin{vmatrix}5~~~~-2\\1~~~~~~~1\end{vmatrix}=5\cdot1-(-2\cdot1)=5+2=7\\\\\\ x=\dfrac{7}{7}=1 \underbrace{$\begin{pmatrix}3~~~~-2\\2~~~~~~~1\end{pmatrix}$}_{A}\cdot\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix}5\\1\end{pmatrix}\\\\\\\\det~A=\begin{vmatrix}3~~~~-2\\2~~~~~~~1\end{vmatrix}=3\cdot1-(-2\cdot2)=3+4=7 \neq 0\\\\\\\\x=\dfrac{det~A'}{det~A}\\\\\\\\det~A'=\begin{vmatrix}5~~~~-2\\1~~~~~~~1\end{vmatrix}=5\cdot1-(-2\cdot1)=5+2=7\\\\\\ x=\dfrac{7}{7}=1](https://tex.z-dn.net/?f=%5Cunderbrace%7B%24%5Cbegin%7Bpmatrix%7D3%7E%7E%7E%7E-2%5C%5C2%7E%7E%7E%7E%7E%7E%7E1%5Cend%7Bpmatrix%7D%24%7D_%7BA%7D%5Ccdot%5Cbegin%7Bpmatrix%7Dx%5C%5Cy%5Cend%7Bpmatrix%7D%3D%5Cbegin%7Bpmatrix%7D5%5C%5C1%5Cend%7Bpmatrix%7D%5C%5C%5C%5C%5C%5C%5C%5Cdet%7EA%3D%5Cbegin%7Bvmatrix%7D3%7E%7E%7E%7E-2%5C%5C2%7E%7E%7E%7E%7E%7E%7E1%5Cend%7Bvmatrix%7D%3D3%5Ccdot1-%28-2%5Ccdot2%29%3D3%2B4%3D7+%5Cneq+0%5C%5C%5C%5C%5C%5C%5C%5Cx%3D%5Cdfrac%7Bdet%7EA%27%7D%7Bdet%7EA%7D%5C%5C%5C%5C%5C%5C%5C%5Cdet%7EA%27%3D%5Cbegin%7Bvmatrix%7D5%7E%7E%7E%7E-2%5C%5C1%7E%7E%7E%7E%7E%7E%7E1%5Cend%7Bvmatrix%7D%3D5%5Ccdot1-%28-2%5Ccdot1%29%3D5%2B2%3D7%5C%5C%5C%5C%5C%5C+x%3D%5Cdfrac%7B7%7D%7B7%7D%3D1)
![y=\dfrac{det~A''}{det~A}\\\\\\\\det~A''=\begin{vmatrix}3~~~~5\\2~~~~1\end{vmatrix}=3\cdot1-5\cdot2=3-10=-7\\\\\\\\ y=\dfrac{-7}{~~7}=-1\\\\\\\\S=\begin{Bmatrix}x=1\\\\y=-1\end. y=\dfrac{det~A''}{det~A}\\\\\\\\det~A''=\begin{vmatrix}3~~~~5\\2~~~~1\end{vmatrix}=3\cdot1-5\cdot2=3-10=-7\\\\\\\\ y=\dfrac{-7}{~~7}=-1\\\\\\\\S=\begin{Bmatrix}x=1\\\\y=-1\end.](https://tex.z-dn.net/?f=y%3D%5Cdfrac%7Bdet%7EA%27%27%7D%7Bdet%7EA%7D%5C%5C%5C%5C%5C%5C%5C%5Cdet%7EA%27%27%3D%5Cbegin%7Bvmatrix%7D3%7E%7E%7E%7E5%5C%5C2%7E%7E%7E%7E1%5Cend%7Bvmatrix%7D%3D3%5Ccdot1-5%5Ccdot2%3D3-10%3D-7%5C%5C%5C%5C%5C%5C%5C%5C+y%3D%5Cdfrac%7B-7%7D%7B%7E%7E7%7D%3D-1%5C%5C%5C%5C%5C%5C%5C%5CS%3D%5Cbegin%7BBmatrix%7Dx%3D1%5C%5C%5C%5Cy%3D-1%5Cend.)
Primeiro vamos reescrever o sistema em sua forma matricial
Se o determinante da matriz incompleta (chamaremos a matriz incompleta de A) for diferente de zero o sistema possuirá solução única.
Calculemos seu determinante:
Como o determinante de A é diferente de zero o sistema possui solução única.
Para descobrir os valores de x e y é feito o seguinte:
Para descobrir x substitui-se a primeira coluna da matriz A pela coluna dos termos independentes, em seguida calcula-se o determinante da matriz obtida de A, feito isso nós dividimos esse determinante pelo determinante da matriz A, o resultado disso é o valor de x.
Para encontrar y seguimos o mesmo processo, mas ao invés de substituirmos a primeira coluna da matriz A pelos termos independentes, nós substituímos a segunda coluna.
Portanto, vamos descobrir x e y.
De modo análogo vamos resolver o segundo sistema:
Perguntas interessantes
Biologia,
11 meses atrás
Matemática,
11 meses atrás
História,
11 meses atrás
Biologia,
1 ano atrás
Biologia,
1 ano atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás