Matemática, perguntado por Ericklurian2014, 1 ano atrás

1- Resolva em C:

A) z2-2z+2=0
B) 2z^2+z+1=0
C) Z^2-iz+2=0
D) Z^4=1
E) z^4-81=0

Me ajudem por favor! É urgente.

Soluções para a tarefa

Respondido por Helvio
3
a)  z^{2} -2z + 2 = 0

Δ=b2−4ac
Δ=(2)2−4*(1)*(2)
Δ=4−8
Δ=−4

x = \frac{-b \pm \sqrt{\triangle}}{2*a} \\ \\ x = \frac{-(2) \pm \sqrt{-4}}{2*1} \\ \\ x = \frac{-2 \pm \sqrt{-4*i}}{2 } \\ \\ z' = \frac{-2 + 2*i}{2} \\ \\z' = \frac{-2- 2*i}{2} \\  \\ z' = -1 \\ \\ z'' = -1 \\ \\ S = \left \{- 1, - 1 \right.\}

b) 
2z^2 + z + 1 = 0

Δ=b2−4ac
Δ=(1)2−4*(2)*(1)
Δ=1−8
Δ=−7

x = \frac{-b \pm \sqrt{\triangle}}{2*a} \\ \\ x = \frac{-1 \pm \sqrt{-7}}{2*2} \\ \\ x = \frac{-1 \pm \sqrt{-7}*i}{4 } \\ \\ z' = \frac{-1 + 7*i}{4} \\ \\ z' =\frac{-1 + 7*i}{4}  \\  \\ z'' =\frac{-1 + 7*i}{4}  \\  \\ S =  \left \{z' =\frac{-1 + 7*i}{4}, \frac{-1 - 7*i}{4} \right.\}

c)

 z^{2} -i*z + 2 = 0

(z - i) (z - 2i)
x = i
x = 2i
 S = \left \{i}, 2i \right.\}

d)
 z^{4} = 1 \\  \\  z^{4} - 1 = 0  \\  \\ (z + 1)(z - 1)(z - i)(z - i) \\  \\ z' = -1  \\  \\ z'' = 1  \\  \\ z''' = -i \\  \\ z''''= i

S = \left \{1, - 1, -i, i} \right.\}

e)

 z^{4} -81 = 0

(z + 3)(z - 3)(z 3i)(z  - 3i)

z' = -3
z'' = 3
z''' = 3i
z'''' = -3i

S = \left \{-3, 3,  3i, -3i} \right.\}

Ericklurian2014: Muito obrigado, ajudou muito!
Helvio: de nada.
Respondido por korvo
1
E aí Erick,

lembre-se que √-1 = i:

z^2-2z+2=0\\\\
\Delta=(-2)^2-4*1*2\\
\Delta=4-8\\
\Delta=-4\\\\ z= \dfrac{-(-2)\pm \sqrt{-4} }{2*1}= \dfrac{2\pm \sqrt{4}* \sqrt{-1}  }{2}= \dfrac{2\pm2*i}{2}= \dfrac{2\pm2i}{2}=1\pm i\\\\\\
\boxed{S=\{1+i,~1-i\}}

__________________

2z^2+z+1=0\\\\
\Delta=1^2-4*2*1\\
\Delta=1-8\\
\Delta=-7\\\\
z= \dfrac{-1\pm \sqrt{-7} }{2*2}= \dfrac{-1\pm \sqrt{7}* \sqrt{-1}  }{4}= \dfrac{-1\pm \sqrt{7}*i }{4}= \dfrac{-1\pm \sqrt{7}i }{4}\\\\\\
S=\left\{ -\dfrac{1}{4}+ \dfrac{ \sqrt{7} }{4}i,~ -\dfrac{1}{4}- \dfrac{ \sqrt{7} }{4}i\right\}

__________________

z^2-z+2=0\\\\
\Delta=(-1)^2-4*1*2\\
\Delta=1-8\\
\Delta=-7\\\\
z= \dfrac{-(-1)\pm \sqrt{-7} }{2*1}= \dfrac{1\pm \sqrt{7}* \sqrt{-1}  }{2*1}= \dfrac{1\pm \sqrt{7} i}{2}\\\\\\
S=\left\{ \dfrac{1}{2}+ \dfrac{ \sqrt{7} }{2}i,~ \dfrac{1}{2}- \dfrac{ \sqrt{7} }{2}i\right\}

__________________

z^4=1\\
(z^2)^2=1\\\\
z^2=k\\\\
k^2=1\\
k=\pm \sqrt{1}\\
k=\pm1\\\\
para~k=1:~~~~~~~~~~~~~~~~para~k=-1\\
z^2=1~~~~~~~~~~~~~~~~~~~~~~~~z^2=-1\\
z=\pm \sqrt{1}~~~~~~~~~~~~~~~~~~~~~z=\pm \sqrt{-1} \\
z=\pm1~~~~~~~~~~~~~~~~~~~~~~~z=\pm \sqrt{1}* \sqrt{-1}\\
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~z= \pm1*i\\
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~z=\pm i\\\\\\
\boxed{S=\{1,-1,i,-i\}}

___________________

z^4-81=0\\
(z^2)^2-81=0\\\\
z^2=k\\\\
k^2-81=0\\
k^2=81\\
k= \pm\sqrt{81}\\
k=\pm9\\\\
z^2=k\\\\
z^2=9~~~~~~~~~~~~~~~~z^2=-9\\
z=\pm \sqrt{9}~~~~~~~~~~~~~z=\pm \sqrt{-9} \\
z=\pm3~~~~~~~~~~~~~~~z=\pm3i\\\\\\
\boxed{S=\{3,-3,3i,-3i\}}

Tenha ótimos estudos =))
Perguntas interessantes