Matemática, perguntado por desanimadokk, 10 meses atrás

1) Qual o valor da combinação C 10,3? 2) Encontre o valor dos números binomiais:

Anexos:

Soluções para a tarefa

Respondido por Usuário anônimo
0

Explicação passo-a-passo:

De modo geral:

\sf \dbinom{n}{k}=\dfrac{n!}{k!\cdot(n-k)!}

1)

\sf C_{10,3}=\dbinom{10}{3}

\sf \dbinom{10}{3}=\dfrac{10!}{3!\cdot(10-3)!}

\sf \dbinom{10}{3}=\dfrac{10!}{3!\cdot7!}

\sf \dbinom{10}{3}=\dfrac{10\cdot9\cdot8\cdot7!}{6\cdot7!}

\sf \dbinom{10}{3}=\dfrac{720}{6}

\sf \dbinom{10}{3}=120

\sf C_{10,3}=120

2)

a)

\sf \dbinom{5}{2}=\dfrac{5!}{2!\cdot(5-2)!}

\sf \dbinom{5}{2}=\dfrac{5!}{2!\cdot3!}

\sf \dbinom{5}{2}=\dfrac{120}{2\cdot6}

\sf \dbinom{5}{2}=\dfrac{120}{12}

\sf \dbinom{5}{2}=10

b)

\sf \dbinom{10}{6}=\dfrac{10!}{6!\cdot(10-6)!}

\sf \dbinom{10}{6}=\dfrac{10!}{6!\cdot4!}

\sf \dbinom{10}{6}=\dfrac{10\cdot9\cdot8\cdot7\cdot6!}{6!\cdot24}

\sf \dbinom{10}{6}=\dfrac{5040}{24}

\sf \dbinom{10}{6}=210

c)

\sf \dbinom{8}{0}=\dfrac{8!}{0!\cdot(8-0)!}

\sf \dbinom{8}{0}=\dfrac{8!}{0!\cdot8!}

\sf \dbinom{8}{0}=1

Perguntas interessantes