1
o valor a integral ∫3x dx
0
Soluções para a tarefa
Respondido por
2
Olá Felicianadm, qualquer dúvida só falar
Segue a resolução:
![\int\limits^1_0 {3x} \, dx = \frac{3x^2}{2} \left\begin{array}{ccc}1\\|\\0\end{array}\right \int\limits^1_0 {3x} \, dx = \frac{3x^2}{2} \left\begin{array}{ccc}1\\|\\0\end{array}\right](https://tex.z-dn.net/?f=+%5Cint%5Climits%5E1_0+%7B3x%7D+%5C%2C+dx+%3D++%5Cfrac%7B3x%5E2%7D%7B2%7D+++%5Cleft%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C%7C%5C%5C0%5Cend%7Barray%7D%5Cright)
Limite superior menos inferior:
![\frac{3*1^2}{2} - \frac{3*0^2}{2} = \frac{3}{2} \frac{3*1^2}{2} - \frac{3*0^2}{2} = \frac{3}{2}](https://tex.z-dn.net/?f=+%5Cfrac%7B3%2A1%5E2%7D%7B2%7D+-++%5Cfrac%7B3%2A0%5E2%7D%7B2%7D+%3D++%5Cfrac%7B3%7D%7B2%7D++)
Segue a resolução:
Limite superior menos inferior:
Perguntas interessantes
Filosofia,
1 ano atrás
Física,
1 ano atrás
Português,
1 ano atrás
Química,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás