1) No lançamento de dois dados, calcule a probabilidade de obter a soma igual a 5?
Soluções para a tarefa
Respondido por
2
Os resultados possíveis no lançamento de dois dados são:
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
Das 36 possibilidades 4 resultam soma 5
Logo a probabilidade procurada é:
p = 4/36 = 0,111... ≈ 11,1 %
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
Das 36 possibilidades 4 resultam soma 5
Logo a probabilidade procurada é:
p = 4/36 = 0,111... ≈ 11,1 %
marlonfreitasjr:
Muito obrigado! Vc é fera... ;)
Respondido por
0
Resposta:
11,11%
Explicação passo-a-passo:
S = { {4,1} , {1,4} , {3,2} , {2,3} }
São 4 possibilidades em 36 = ( 4 / 36 ) x 100 = 11,11%
Perguntas interessantes
Matemática,
10 meses atrás
Inglês,
10 meses atrás
Biologia,
10 meses atrás
Física,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás