1. (Mackenzie 2014) Na figura abaixo, a e b são retas paralelas.
A afirmação correta a respeito do número que expressa, em graus, a medida do ângulo α é
a) um número primo maior que 23.
b) um número ímpar.
c) um múltiplo de 4.
d) um divisor de 60.
e) um múltiplo comum entre 5 e 7.
Soluções para a tarefa
4α + 60 - α + 180 - 2α - 90 = 180
α = 90 - 60 = 30°
d) um divisor de 60.
A afirmação correta é: a medida do ângulo α é um divisor de 60.
Como as retas a e b são paralelas e são cortadas por uma transversal, os ângulos 60º - α + 4α e 2α + 90º são alternos internos.
Isso significa que os dois ângulos são iguais.
Sendo assim, temos a seguinte equação:
60 - α + 4α = 2α + 90
60 + 3α = 2α + 90
3α - 2α = 90 - 60
α = 30.
Portanto, o ângulo α é igual a 30º.
Agora, vamos analisar as alternativas.
a) A alternativa está errada, porque o número 30 não é um número primo.
b) A alternativa está errada, porque o número 30 não é ímpar.
c) A alternativa está errada, porque o número 30 não é um múltiplo de 4.
d) A alternativa está correta.
e) A alternativa está errada, pois o múltiplo comum entre 5 e 7 é 35.
Para mais informações sobre ângulo: https://brainly.com.br/tarefa/6264472