1) Encontre as raízes das seguintes equações:
a) X² - 25 = 0
b) 2x² - 200 = 0
c) X² - 10 = 0
d) X² - 2x – 3 = 0
e) X² + 4x + 2 = 0
Soluções para a tarefa
Explicação passo-a-passo:
a) X² - 25 = 0
X² = 25
X= ±5
B) 2X² - 200= 0
Divide por 2
X² - 100 = 0
X² = 100
X= ±10
C) X² - 10 = 0
X² = 10
X= ±√10
D) X= -(-2)±√4+12/2
X= 2±4/2
X= 3
X= -1
e) X²+4X +2= 0
X= -4±√16-8/2
X= -4±2√2/2
X= -2±√2
Resposta:
A)x2- 25 = 0
( 1 ) ⋅x2+ ( - 25 ) = 0
x =±- ( 1 ) ⋅ ( - 25 )-----------√1
x = ±25--√
x = ± ( 5 )
x1= 5
x2= - 5
B)2x2- 200 = 0
( 2 ) ⋅x2+ ( - 200 ) = 0
x =±- ( 2 ) ⋅ ( - 200 )------------√2
x =±400---√2
x =± ( 20 )2
x = ±( 2 )⋅ ( 10 )( 2 )
x1= 10
x2= - 10
C)x2- 10 = 0
( 1 ) ⋅x2+ ( - 10 ) = 0
x =±- ( 1 ) ⋅ ( - 10 )-----------√1
x = ±10--√
x1=10--√
x2= -10--√
D)x2- 2 x - 3 = 0
( 1 ) ⋅x2+ ( - 2 ) ⋅ x + ( - 3 ) = 0
x =- ( - 2 ) ±( - 2 )2- 4 ⋅ ( - 3 )---------------√2
x =2 ±4 - ( - 12 )---------√2
x =2 ±16--√2
x =2 ± ( 4 )2
x1=62=( 2 )⋅ ( 3 )( 2 )= 3
E)x2+ 4 x + 2 = 0
( 1 ) ⋅x2+ ( 4 ) ⋅ x + ( 2 ) = 0
x =- ( 4 ) ±( 4 )2- 4 ⋅ ( 2 )----------√2
x =- 4 ±16 - ( 8 )-------√2
x =- 4 ±8-√2
x =- 4 ± ( 2 ) ⋅2-√2
x =( 2 )⋅ [ ( - 2 ) ±2-√]( 2 )
x1= - 2 +2-√
x2= - 2 -2-√