Matemática, perguntado por malublack, 1 ano atrás

1,444...:1/3+7,101010....

 

2) raiz quadrada 0,81:raiz quadrada 0,25+0,5:raiz quadrada 0,09

 

escreva os numeros x, y ez na forma fracionaria

 

x=4,15:3,6

 

y=3,121212...:2,06

 

z=8,101010...:2,545454...

 

Soluções para a tarefa

Respondido por Celio
2

Olá, Malu Black.

 

<var>1) 1,444...:1/3+7,101010....=(1+\frac49) \cdot 3 + 7 + \frac{10}{99}=\\\\=\frac{9+4}9\cdot 3+7+\frac{10}{99}= \frac{13}3+7+\frac{10}{99}=\frac{429+693+10}{99}=\frac{1132}{99}\\\\ 2) \sqrt{0,81}:\sqrt{0,25}+0,5:\sqrt{0,09}= 0,9:0,5+0,5:0,03=\\\\=\frac9{10} : \frac12+\frac12:\frac3{100}=\frac9{10} \cdot 2 +\frac12 \cdot \frac{100}3=\frac{9}{5}+\frac{50}3=\frac{27+250}{15}=\frac{277}{15}</var>

 

<var>3) x=4,15:3,6=\frac{415}{100} \cdot \frac{10}{36}=\frac{83}{50} \cdot \frac{5}{18}=\frac{83}{180}\\\\ y=3,121212...:2,06=(3+\frac{12}{99}):\frac{206}{100}=\frac{297+12}{99} \cdot \frac{100}{206}=\frac{309}{99} \cdot \frac{50}{103}=\\\\= \frac{103}{33} \cdot \frac{50}{103} =\frac{50}{33}\\\\ z=8,101010...:2,545454...=(8+\frac{10}{99}):(2+\frac{54}{99})=\\\\=\frac{792+10}{99} \cdot \frac{99}{198+54} = \frac{892}{252}=\frac{223}{63}\\\\</var>

Perguntas interessantes