(1+3a/2) elevado a 6 "-".como resolve?
Anexos:
![](https://pt-static.z-dn.net/files/d5e/5045e2dbb846fea4ea09276e1fc4b60f.jpg)
larissalupepsa:
***utilizando binômio
Soluções para a tarefa
Respondido por
9
Pelo Binômio de Newton:
.
Deste modo:
.
São esses os sete termos:
![\dbinom{6}{0}1^6=1 \dbinom{6}{0}1^6=1](https://tex.z-dn.net/?f=%5Cdbinom%7B6%7D%7B0%7D1%5E6%3D1)
![\dbinom{6}{1}1^5\cdot\left(\dfrac{3a}{2}\right)^1=6\cdot\left(\dfrac{3a}{2}\right)=9a \dbinom{6}{1}1^5\cdot\left(\dfrac{3a}{2}\right)^1=6\cdot\left(\dfrac{3a}{2}\right)=9a](https://tex.z-dn.net/?f=%5Cdbinom%7B6%7D%7B1%7D1%5E5%5Ccdot%5Cleft%28%5Cdfrac%7B3a%7D%7B2%7D%5Cright%29%5E1%3D6%5Ccdot%5Cleft%28%5Cdfrac%7B3a%7D%7B2%7D%5Cright%29%3D9a)
![\dbinom{6}{2}1^4\cdot\left(\dfrac{3a}{2}\right)^2=15\cdot\left(\dfrac{9a^2}{4}\right)=\dfrac{135a^2}{4} \dbinom{6}{2}1^4\cdot\left(\dfrac{3a}{2}\right)^2=15\cdot\left(\dfrac{9a^2}{4}\right)=\dfrac{135a^2}{4}](https://tex.z-dn.net/?f=%5Cdbinom%7B6%7D%7B2%7D1%5E4%5Ccdot%5Cleft%28%5Cdfrac%7B3a%7D%7B2%7D%5Cright%29%5E2%3D15%5Ccdot%5Cleft%28%5Cdfrac%7B9a%5E2%7D%7B4%7D%5Cright%29%3D%5Cdfrac%7B135a%5E2%7D%7B4%7D)
![\dbinom{6}{3}1^3\cdot\left(\dfrac{3a}{2}\right)^3=20\cdot\left(\dfrac{27a^3}{8}\right)=\dfrac{135a^3}{2} \dbinom{6}{3}1^3\cdot\left(\dfrac{3a}{2}\right)^3=20\cdot\left(\dfrac{27a^3}{8}\right)=\dfrac{135a^3}{2}](https://tex.z-dn.net/?f=%5Cdbinom%7B6%7D%7B3%7D1%5E3%5Ccdot%5Cleft%28%5Cdfrac%7B3a%7D%7B2%7D%5Cright%29%5E3%3D20%5Ccdot%5Cleft%28%5Cdfrac%7B27a%5E3%7D%7B8%7D%5Cright%29%3D%5Cdfrac%7B135a%5E3%7D%7B2%7D)
![\dbinom{6}{4}1^2\cdot\left(\dfrac{3a}{2}\right)^4=15\cdot\left(\dfrac{81a^4}{16}=\dfrac{1215a^4}{16} \dbinom{6}{4}1^2\cdot\left(\dfrac{3a}{2}\right)^4=15\cdot\left(\dfrac{81a^4}{16}=\dfrac{1215a^4}{16}](https://tex.z-dn.net/?f=%5Cdbinom%7B6%7D%7B4%7D1%5E2%5Ccdot%5Cleft%28%5Cdfrac%7B3a%7D%7B2%7D%5Cright%29%5E4%3D15%5Ccdot%5Cleft%28%5Cdfrac%7B81a%5E4%7D%7B16%7D%3D%5Cdfrac%7B1215a%5E4%7D%7B16%7D)
![\dbinom{6}{5}1^1\cdot\left(\dfrac{3a}{2}\right)^5=6\cdot\left(\dfrac{243a^5}{32}\right)=\dfrac{729a^5}{16} \dbinom{6}{5}1^1\cdot\left(\dfrac{3a}{2}\right)^5=6\cdot\left(\dfrac{243a^5}{32}\right)=\dfrac{729a^5}{16}](https://tex.z-dn.net/?f=%5Cdbinom%7B6%7D%7B5%7D1%5E1%5Ccdot%5Cleft%28%5Cdfrac%7B3a%7D%7B2%7D%5Cright%29%5E5%3D6%5Ccdot%5Cleft%28%5Cdfrac%7B243a%5E5%7D%7B32%7D%5Cright%29%3D%5Cdfrac%7B729a%5E5%7D%7B16%7D)
.
Portanto,
.
Deste modo:
São esses os sete termos:
Portanto,
Perguntas interessantes
Geografia,
1 ano atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Português,
1 ano atrás