Matemática, perguntado por Usuário anônimo, 1 ano atrás

02-Resolver o sistema abaixo pela Regra de Cramer.
x+2y-z = 2
2x - y +z = 3
x + y+ z = 6

Soluções para a tarefa

Respondido por hendrisyafa
3
coeficiente :
  \left[\begin{array}{ccc}1&2&-1\\2&-1&1\\1&1&1\end{array}\right]   \left[\begin{array}{ccc}x\\y\\z\end{array}\right] =  \left[\begin{array}{ccc}2\\3\\6\end{array}\right]

x =  \frac{  \left[\begin{array}{ccc}2&2&-1\\3&-1&1\\6&1&1\end{array}\right]  \left[\begin{array}{ccc}2&2\\3&-1\\6&1\end{array}\right]  }{  \left[\begin{array}{ccc}1&2&-1\\2&-1&1\\1&1&1\end{array}\right]   \left[\begin{array}{ccc}1&2\\2&-1\\1&1\end{array}\right] }  

   =  \frac{(-2+12-3)-(6+2+6)}{(-1+2-2)-(4+1+1)} =  \frac{7-14}{-1-6}

   =  \frac{-7}{-7} = 1

y =  \frac{ \left[\begin{array}{ccc}1&2&-1\\2&3&1\\1&6&1\end{array}\right] \left[\begin{array}{ccc}1&2\\2&3\\1&6\end{array}\right] }{ \left[\begin{array}{ccc}1&2&-1\\2&-1&1\\1&1&1\end{array}\right] \left[\begin{array}{ccc}1&2\\2&-1\\1&1\end{array}\right] }
 
   =  \frac{(3+2-12)-(4+6-3)}{-7} =  \frac{-7-7}{-7}
 
   =  \frac{-14}{-7} = 2
   
z =  \frac{ \left[\begin{array}{ccc}1&2&2\\2&-1&3\\1&1&6\end{array}\right] \left[\begin{array}{ccc}1&2\\2&-1\\1&1\end{array}\right] }{ \left[\begin{array}{ccc}1&2&-1\\2&-1&1\\1&1&1\end{array}\right] \left[\begin{array}{ccc}1&2\\2&-1\\1&1\end{array}\right] }  

   =  \frac{(-6+6+4)-(24+3-2)}{-7} =  \frac{4-25}{-7}
   
   =  \frac{-21}{-7} = 3

x = 1, y =2 , z = 3

Perguntas interessantes