Matemática, perguntado por myrainbowrosie, 6 meses atrás

01. Dada as coordenadas dos vértices de um triângulo ABC, A (5,1), B (5,8) e C
(8,3). Qual distância do baricentro deste triângulo até o seu vértice A?

a) 2
b) 4
e) √10
d) √17
e) 20

Soluções para a tarefa

Respondido por auditsys
3

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\mathsf{M_{BC} = \{\dfrac{x_B + x_C}{2};\dfrac{y_B + y_C}{2}\}}

\mathsf{M_{BC} = \{\dfrac{5 + 8}{2};\dfrac{8 + 3}{2}\}}

\mathsf{M_{BC} = \{\dfrac{13}{2};\dfrac{11}{2}\}}

\mathsf{d_{AM} = \sqrt{(x_M - x_A)^2 + (y_M - y_A)^2}}

\mathsf{d_{AM} = \sqrt{(\dfrac{13}{2} - 5)^2 + (\dfrac{11}{2} - 1)^2}}

\mathsf{d_{AM} = \sqrt{(\dfrac{13 - 10}{2})^2 + (\dfrac{11 - 2}{2})^2}}

\mathsf{d_{AM} = \sqrt{(\dfrac{3}{2})^2 + (\dfrac{9}{2})^2}}

\mathsf{d_{AM} = \sqrt{\dfrac{9}{4} + \dfrac{81}{4}}}

\mathsf{d_{AM} = \sqrt{\dfrac{90}{4}}}

\mathsf{d_{AM} = \sqrt{\dfrac{3^2.10}{2^2}}}

\mathsf{d_{AM} = \dfrac{3\sqrt{10}}{2}}

\mathsf{x = \dfrac{2}{3} \times \dfrac{3\sqrt{10}}{2}}

\boxed{\boxed{\mathsf{x = \sqrt{10}}}}\leftarrow\textsf{letra C}

Respondido por cicerademoura74
0

Resposta:

vamos ler a bibliaaaaaaaaaaaaa

Perguntas interessantes