Matemática, perguntado por jpcnogueira200, 1 ano atrás

{█(x+y=8@x^2+y^2=50) resolva esse sistema de equação de 2 grau

Soluções para a tarefa

Respondido por TesrX
1
Olá.

Vamos primeiro encontrar uma equação de 2° grau para trabalharmos.

\left\{\begin{array}{ccc}\mathsf{x+y}&=&\mathsf{8}\\\mathsf{x^2+y^2}&=&\mathsf{50}\end{array}\right\\\\\\
\mathsf{x+y=8}\\\\
\mathsf{x=8-y}\\\\\\\\
\mathsf{x^2+y^2=50}\\\\
\mathsf{(8-y)^2+y^2=50}\\\\
\mathsf{(64-16y+y^2)+y^2=50}\\\\
\mathsf{y^2+y^2-16y+64-50=0}\\\\
\mathsf{2y^2-16y+14=0}\\\\

Tendo encontrado a equação, vamos agora desenvolver por Bhaskara.

\mathsf{2y^2-16y+14=0}\\\\\\
\Large\mathsf{y=\dfrac{-b\pm\sqrt{b^2-4\cdot a\cdot c}}{2a}}\\\\\\ \mathsf{y=\dfrac{-(-16)\pm\sqrt{(-16)^2-4\cdot2\cdot14}}{2\cdot2}}\\\\\\ \mathsf{y=\dfrac{16\pm\sqrt{256-4\cdot28}}{4}}\\\\\\ \mathsf{y=\dfrac{16\pm\sqrt{256-112}}{4}}\\\\\\ \mathsf{y=\dfrac{16\pm\sqrt{144}}{4}}\\\\\\ \mathsf{y=\dfrac{16\pm12}{4}}

Vamos agora encontrar as duas raízes:
\mathsf{y=\dfrac{16\pm12}{4}}\\\\\\
\mathsf{y'=\dfrac{16+12}{4}}\\\\\\
\mathsf{y'=\dfrac{28}{4}}\\\\\\
\boxed{\mathsf{y'=7}}\\\\\\
\mathsf{y''=\dfrac{16-12}{4}}\\\\\\
\mathsf{y''=\dfrac{4}{4}}\\\\\\\mathsf{y''=1}}

Os dois valores encontrados são válidos tanto para x quanto para y. Assim:

\boxed{\boxed{\mathsf{S=\{(x,~y)\in\mathbb{R}~|~(x,~y)=(1,~7)\}}}}}


Vamos testar:
\left\{\begin{array}{ccc}\mathsf{x+y}&=&\mathsf{8}\\\mathsf{x^2+y^2}&=&\mathsf{50}\end{array}\right\\\\\\ \textsf{Usemos x~=~1 e y~=~7.}\\\\
\mathsf{1+7=8}\\\boxed{\mathsf{8=8~\checkmark}}\\\\\\\mathsf{1^2+7^2=50}\\\mathsf{1+49=50}\\\boxed{\mathsf{50=50~\checkmark}}

Testado e aprovado.

Qualquer dúvida, deixe nos comentários.
Bons estudos.
Perguntas interessantes