Matemática, perguntado por fussiegerbiah, 1 ano atrás

X ao quadrado =2x+24

Soluções para a tarefa

Respondido por caio0202
2
\mathtt{x^2 = 2x + 24} \\ \mathtt{x^2 -2x - 24 = 0} \\ \\ \mathtt{a = 1 }  \\ \mathtt{b = -2} \\ \mathtt{c = - 24} \\ \\ \\ \mathtt{\Delta = b^2-4~.~a~.~c} \\ \\ \mathtt{\Delta = (-2)^2-4~.~1~.~(-24)} \\ \mathtt{\Delta = 4  + 96} \\ \mathtt{\Delta = 100} \\ \\ \mathtt{\frac{-b+-\sqrt{\Delta}}{2~.~a} }   \\ \\ \mathtt{\frac{-(-2) +- \sqrt{100}}{2~.~1}}  \\ \\ \mathtt{\frac{2 +- 10}{2}}

\mathtt{x' = \frac{2 +10}{2}} \\ \\ \mathtt{x' = \frac{12}{2}} \\ \\ \boxed{\mathtt{x' = 6}} \\ \\ \\ \mathtt{x'' = \frac{2 - 10}{2}} \\ \\ \mathtt{x'' = \frac{-8}{2}} \\ \\ \boxed{\mathtt{x'' = -4 }} \\ \\ \\ \boxed{\boxed{\mathtt{Resposta : -4~~~e~~6}}}
Respondido por ivanildoleiteba
1
Olá, boa noite ☺

Resolução:

x²=2x+24
x²-2x-24=0

Coeficientes:

a=1, b=-2, c= -24

Valor do discriminante:

\Delta=b^2-4.a.c<br />\\ \Delta=(-2)^2-4.1.(-24)<br />\\ \Delta=4+96<br />\\ \Delta=100

Valores de x:

x= \dfrac{-b\pm \sqrt{\Delta} }{2.a} <br />\\<br />\\ x= \dfrac{-(-2)\pm \sqrt{100} }{2.1} <br />\\<br />\\ x= \dfrac{2\pm10}{2} <br />\\<br />\\ x'= \dfrac{2+10}{2}= \frac{12}{2} =6<br />\\<br />\\ x''=  \dfrac{2-10}{2} = \dfrac{-8}{2} =-4

S={6,-4}

Bons estudos :)
Perguntas interessantes