Matemática, perguntado por sysyseu, 1 ano atrás

x^{4} -26 x^{2} +25=0 equação biquadrada

ALGUEM ME RESPONDE PELO AMOR DA TINKER BEU


sysyseu: ME AJUDEM

Soluções para a tarefa

Respondido por ProfRafael
3
x^{4}-26x^{2}+25 = 0 \\  \\ y = x^{2} \\  \\ y^{2}-26y+25=0 \\  \\ D =(-26)^{2}-4(1)(25) \\  \\ D = 676 - 100 = 576 \\  \\  \sqrt{D} =  \sqrt{576} = 24 \\  \\ y' =  \frac{(26+24)}{2} = 25 \\  \\  y'' =  \frac{(26-24)}{2} = 1\\  \\  y = x^{2} \\  \\ 25 = x^{2} \\  \\ x = +5 \ ou \ x = -5 \\  \\ 1 = x^{2} \\  \\ x = 1 \ou \ ou x = -1 \\  \\

Espero ter ajudado.
Respondido por Math739
3

\mathsf{x^4-26x^2+25=0}

\mathsf{a=1\quad b=-26\quad c=25}

\mathsf{ \Delta=b^2-4\cdot a\cdot c}

\mathsf{ \Delta=(-26)^2-4\cdot1\cdot25}

\mathsf{\Delta=6 76- 100}

\mathsf{ \Delta= 576}

\mathsf{x=\pm\sqrt{\dfrac{-b\pm\sqrt\Delta}{2\cdot a}} }

\mathsf{x=\pm\sqrt{\dfrac{-(-26)\pm\sqrt{576}}{2\cdot1}} }

\mathsf{ x=\pm\sqrt{\dfrac{26\pm24}{2}}\begin{cases}\sf x'=\sqrt{\dfrac{26+24}{2}}=\sqrt{25}=5\\\\\sf x''=-\sqrt{\dfrac{26+24}{2}}=-\sqrt{25}=-5\\\\\sf x'''=\sqrt{\dfrac{26-24}{2}}= \sqrt1=1\\\\\sf x''''=-\sqrt{\dfrac{26-24}{2}}=-\sqrt1=-1\end{cases}}

\boxed{\boxed{\mathsf{S=\{-5;~-1;~1;~5\}}}}

Perguntas interessantes