Matemática, perguntado por anamaria1234567, 1 ano atrás

(x+3) (x-2)>0 ???????????

Soluções para a tarefa

Respondido por raphaelduartesz
0

Trata-se de uma inequação produto.


1) Vamos analisar o sinal da função f(x) = (x+3).

Vamos encontrar a raiz.

x+3 = 0

x = -3


Para x < -3 ---> seu sinal é negativo. f(x) < 0

Para x > -3 ---> seu sinal é positivo. f(x) > 0


2) Vamos analisar o sinal da função g(x) = (x-2)

Vamos encontrar a raiz.

x-2 = 0

x = 2


Para x < 2 ---> seu sinal é negativo. g(x) < 0

para x > 2 ---> seu sinal é positivo. g(x) > 0


3) Para (x+3)×(x-2)>0 devemos ter f(x)×g(x) > 0


4) Perceba que para x < -3, f(x) < 0 e g(x) < 0

Logo: f(x)×g(x) > 0 para x < -3


Também perceba que para x > 2, f(x) > 0 e g(x) > 0

Logo: f(x)×g(x) > 0


E perceba que para -3 < x < 2, f(x) > 0 e g(x) < 0

Logo: f(x)×g(x) < 0 (não satisfaz)


Então x < -3 e x > 2 satisfazem.


Solução => S = {x ∈ R | x < -3 ou x > 2}



Perguntas interessantes