(X^2 - 5x + 6)^3 - ( x^2 - 5x + 6) = 0
Soluções para a tarefa
Respondido por
3
Olá! Boa noite.
![\\ \mathsf{(x^2 - 5x + 6)^3 - (x^2 - 5x + 6) = 0} \\\\ \mathsf{(x^2 - 5x + 6) \cdot \left [ (x^2 - 5x + 6)^2 - 1 \right ] = 0} \\\\ \mathsf{(x^2 - 5x + 6) \cdot \left \{ \left [ (x^2 - 5x + 6) + 1 \right ] \cdot \left [ (x^2 - 5x + 6) - 1 \right ] \right \} =} \\\\ \mathsf{(x^2 - 5x + 6) \cdot (x^2 - 5x + 7) \cdot (x^2 - 5x + 5) = 0} \\\\ \mathsf{\underbrace{\mathsf{(x^2 - 5x + 5)}}_{(I)}\underbrace{\mathsf{(x^2 - 5x + 6)}}_{(II)}\underbrace{\mathsf{(x^2 - 5x + 7)}}_{(III)} = 0} \\ \mathsf{(x^2 - 5x + 6)^3 - (x^2 - 5x + 6) = 0} \\\\ \mathsf{(x^2 - 5x + 6) \cdot \left [ (x^2 - 5x + 6)^2 - 1 \right ] = 0} \\\\ \mathsf{(x^2 - 5x + 6) \cdot \left \{ \left [ (x^2 - 5x + 6) + 1 \right ] \cdot \left [ (x^2 - 5x + 6) - 1 \right ] \right \} =} \\\\ \mathsf{(x^2 - 5x + 6) \cdot (x^2 - 5x + 7) \cdot (x^2 - 5x + 5) = 0} \\\\ \mathsf{\underbrace{\mathsf{(x^2 - 5x + 5)}}_{(I)}\underbrace{\mathsf{(x^2 - 5x + 6)}}_{(II)}\underbrace{\mathsf{(x^2 - 5x + 7)}}_{(III)} = 0}](https://tex.z-dn.net/?f=%5C%5C+%5Cmathsf%7B%28x%5E2+-+5x+%2B+6%29%5E3+-+%28x%5E2+-+5x+%2B+6%29+%3D+0%7D+%5C%5C%5C%5C+%5Cmathsf%7B%28x%5E2+-+5x+%2B+6%29+%5Ccdot+%5Cleft+%5B+%28x%5E2+-+5x+%2B+6%29%5E2+-+1+%5Cright+%5D+%3D+0%7D+%5C%5C%5C%5C+%5Cmathsf%7B%28x%5E2+-+5x+%2B+6%29+%5Ccdot+%5Cleft+%5C%7B+%5Cleft+%5B+%28x%5E2+-+5x+%2B+6%29+%2B+1+%5Cright+%5D+%5Ccdot+%5Cleft+%5B+%28x%5E2+-+5x+%2B+6%29+-+1+%5Cright+%5D+%5Cright+%5C%7D+%3D%7D+%5C%5C%5C%5C+%5Cmathsf%7B%28x%5E2+-+5x+%2B+6%29+%5Ccdot+%28x%5E2+-+5x+%2B+7%29+%5Ccdot+%28x%5E2+-+5x+%2B+5%29+%3D+0%7D+%5C%5C%5C%5C+%5Cmathsf%7B%5Cunderbrace%7B%5Cmathsf%7B%28x%5E2+-+5x+%2B+5%29%7D%7D_%7B%28I%29%7D%5Cunderbrace%7B%5Cmathsf%7B%28x%5E2+-+5x+%2B+6%29%7D%7D_%7B%28II%29%7D%5Cunderbrace%7B%5Cmathsf%7B%28x%5E2+-+5x+%2B+7%29%7D%7D_%7B%28III%29%7D+%3D+0%7D)
Resolvendo cada fator por Bháskara:
Fator I:

Fator II:

Fator III:

Logo,
Resolvendo cada fator por Bháskara:
Fator I:
Fator II:
Fator III:
Logo,
adenaurabezerra:
Muito obrigada!
Respondido por
0
Resp................
Explicação passo a passo:
................
Perguntas interessantes