Matemática, perguntado por SHERLOCK11, 1 ano atrás

( x - 1/4)^2 = 9/16.
Fórmula de bháskara.
Algem poderia me ajudar

Soluções para a tarefa

Respondido por DanielSantin
0
Olá, bom dia =D

(x - \frac{1}{4})^2 = \frac{9}{16} \\\\
(x - \frac14)(x - \frac14) = \frac{9}{16} \\\\
x^2 -\frac14x - \frac14x + \frac{1}{16} = \frac{9}{16} \\\\
x^2 - \frac24x + \frac{1}{16}  - \frac{9}{16} = 0 \\\\
x^2 - \frac24x - \frac{8}{16}= 0 \qquad --\ \textgreater \  Simplificando~as~fracoes\\\\
x^2 - \frac12x - \frac{1}{2}= 0

Agora vamos para a parte de bhaskara:

Retirando~informacoes:\\\\
1x^2-\frac12x-\frac12 = 0\\
ax^2+bx+c=0\\\\
a =1\\
b=-\frac12 \\
c=-\frac12 \\\\
Resolvendo: \\\\
\Delta=b^2-4.a.c\\\\
\Delta=(-\frac12)^2 - 4.1.(-\frac12)\\\\
\Delta=\frac14 + 2\\\\\
\Delta=\frac94\\\\\\\\
x^+=\frac{-b \pm \sqrt{\Delta}}{2.a}\\\\
x^+=\frac{-(-\frac12)+\sqrt{\frac{9}{4}} }{2.1}\\\\

x^+ = \frac{\frac12+\frac32}{2} \qquad \qquad\qquad x^-= \frac{\frac12 - \frac32}{2} \\\\
x^+ = \frac{\frac42}{2} \qquad \qquad\qquad~~~ x^-= \frac{-\frac22}{2} \\\\
x^+ = \frac{4}{2.2} \qquad \qquad\qquad~~ x^- = -\frac{1}{2} \\\\
x^+ = 1 \qquad \qquad\qquad~~~~ x^- = -0,5 \\\\

Nuss, que trabalheira, espero ter ajudado.
Bons estudos.
Perguntas interessantes