Matemática, perguntado por her1236, 5 meses atrás

without determining the value of x, evaluate x² + ¹/x² if x - ¹/x = 5​

Soluções para a tarefa

Respondido por CrazyxD
0

We know x - \frac{1}{x} = 5 .

Notice that the x the question wants is squared, and also notice that when we multiply x and 1/x, they cancel out. So by squaring both sides of equations and manipulating it:

(x - \frac{1}{x})^2 = 5^2\\\\(x^2 - 2 *x*(-\frac{1}{x}) + \frac{1}{x^2}) = 25\\\\x^2 + 2 +\frac{1}{x^2}  = 25\\\\x^2 +\frac{1}{x^2} = 23

Respondido por rafames1000
0

If  x-\frac{1}{x}=5

x^{2} +\frac{1}{x^{2} } =?

x-\frac{1}{x}=5

(x-\frac{1}{x})^{2} =5^{2}

x^{2} +2.x.(-\frac{1}{x}) +(-\frac{1}{x} )^{2} =25

x^{2} -\frac{2x}{x} +\frac{1^{2} }{x^{2} } =25

x^{2} -2+\frac{1 }{x^{2} } =25

x^{2} +\frac{1 }{x^{2} } =25+2

x^{2} +\frac{1 }{x^{2} } =27

27

Perguntas interessantes