Vou contar um segredo para você: sou apaixonado por salada de
frutas. Você gosta? Então, suponhamos que faremos uma salada
contendo exatamente 4 frutas. Quantas possibilidades teremos,
sabendo que temos à nossa disposição 10 frutas distintas?
Soluções para a tarefa
Respondido por
19
As possibilidades para fazer a salada de frutas será de exatamente 210 possibilidades.
Para a realização dessa tarefa, temos a informação de que temos à nossa disposição, 10 frutas distintas, e precisamos fazer uma salada de frutas possuindo no total, 4 frutas.
Sabendo disso, temos um exercício de análise combinatória, onde utilizaremos a fórmula da combinação simples, pois a ordem não importa:
= n! ÷ (k!) (n - k)!, onde:
- n é a quantidade de elementos no conjunto, ou seja, 10 frutas
- k é o número que representa a união dos elementos na formação dos agrupamentos, ou seja, 4 opções de frutas
= 10! ÷ (4!) (10 - 4)! ---> 10! ÷ (4!) (6!) ---> 3628800 ÷ (24) (720)
---> 3628800 ÷ 17280 = 210 possibilidades
gabriellenerisdasilv:
Não é assim. Só multiplicamos até o 7, o fatorial ele é cortado, não se multiplica até ele, que é o 6. 10×9×9×7= 5.040
Respondido por
5
Resposta:
Resposta 210
Explicação passo a passo:
C=n,k= N!/(k!)(N-K)
C=10,4= 10!/(4!)(10-4)
C=10!/(4!)(6!)
10x9x8x7x6x5x4x3x2x1/(4x3x2x 1)(6x5x4x3x2x1)
(Removendo os iguais)
10x9x8x7/4x3x2x1
5040/24=210
Perguntas interessantes
Geografia,
5 meses atrás
Matemática,
5 meses atrás
Matemática,
5 meses atrás
Matemática,
6 meses atrás
Português,
6 meses atrás
Sociologia,
11 meses atrás
Português,
11 meses atrás