Vigesimo termo da pa (5,11,17...)
Soluções para a tarefa
Pa (5,11,17,...)
Razão = 5
a1= 5
Pn=a1+(n-1)*r
P20=5+(20-1)*5
P20=5+19*5
P20=5+95
P20= 100
Olá! Segue a resposta com algumas explicações.
(I)Interpretação do problema:
Da sequência (5, 11, 17,...), tem-se:
a)progressão aritmética (P.A.) é uma sequência numérica em que cada termo, à exceção do primeiro, é o resultado do antecessor acrescido (somado) de um valor constante, chamado de razão;
b)primeiro termo (a₁), ou seja, o termo que ocupa a primeira posição:5
c)vigésimo termo (a₂₀): ?
d)número de termos (n): 20 (Justificativa: Embora a PA seja infinita, para o cálculo de um determinado termo, é feito um "corte" nesta PA infinita, de modo a considerar a posição que o termo ocupa (no caso, 20ª), equivalente ao número de termos.)
e)Embora não se saiba o valor do vigésimo termo, apenas pela observação dos três primeiros termos da progressão fornecida, pode-se afirmar que a razão será positiva (afinal, os valores dos termos, crescem (embora negativos, há uma aproximação do zero) e, para que isto aconteça, necessariamente se deve somar um termo positivo, a razão, a um termo qualquer) e o termo solicitado igualmente será maior que zero.
===========================================
(II)Determinação da razão (r) da progressão aritmética:
Observação 1: A razão (r), valor constante utilizado para a obtenção dos sucessivos termos, será obtida por meio da diferença entre um termo qualquer e seu antecessor imediato.
r = a₂ - a₁ ⇒
r = 11 - 5 ⇒
r = 6 (Razão positiva, conforme prenunciado no item e acima.)
===========================================
(III)Aplicação das informações fornecidas pelo problema e da razão acima obtida na fórmula do termo geral (an) da P.A., para obter-se o vigésimo termo:
an = a₁ + (n - 1) . r ⇒
a₂₀ = a₁ + (n - 1) . (r) ⇒
a₂₀ = 5 + (20 - 1) . (6) ⇒
a₂₀ = 5 + (19) . (6) ⇒ (Veja a Observação 2.)
a₂₀ = 5 + 114 ⇒
a₂₀ = 119
Observação 2: Foi aplicada na parte destacada a regra de sinais da multiplicação: dois sinais iguais, +x+ ou -x-, resultam sempre em sinal de positivo (+).
Resposta: O vigésimo termo da P.A.(5, 11, 17, ...) é 119.
=======================================================
DEMONSTRAÇÃO (PROVA REAL) DE QUE A RESPOSTA ESTÁ CORRETA
→Substituindo a₂₀ = 119 fórmula do termo geral da P.A. e omitindo, por exemplo, o primeiro termo (a₁), verifica-se que o valor correspondente a ele será obtido nos cálculos, confirmando-se que o vigésimo termo realmente corresponde ao afirmado:
an = a₁ + (n - 1) . r ⇒
a₂₀ = a₁ + (n - 1) . (r) ⇒
119 = a₁ + (20 - 1) . (6) ⇒
119 = a₁ + (19) . (6) ⇒
119 = a₁ + 114 ⇒ (Passa-se 114 ao 1º membro e altera-se o sinal.)
119 - 114 = a₁ ⇒
5 = a₁ ⇔ (O símbolo ⇔ significa "equivale a".)
a₁ = 5 (Provado que a₂₀ = 119.)
→Veja outras tarefas relacionadas à determinação de termos em progressão aritmética e resolvidas por mim:
https://brainly.com.br/tarefa/24488590
https://brainly.com.br/tarefa/18871555
brainly.com.br/tarefa/10666099
brainly.com.br/tarefa/26214385
brainly.com.br/tarefa/5206724
brainly.com.br/tarefa/8060052
brainly.com.br/tarefa/26456851
brainly.com.br/tarefa/18850852
brainly.com.br/tarefa/4700103
brainly.com.br/tarefa/26453441
brainly.com.br/tarefa/5848781