Verifique se o conjunto x = {+2, -2, + 1, -1} é solução da seguinte equação biquadrada:
x4 - 5x2 +4 = 0
Soluções para a tarefa
Resposta:
Para verificar se os números do conjunto {+2, -2, + 1, -1} são soluções da equação, devemos substituir x pelos valores numéricos e verificar se encontramos ao final dos cálculos: 0 = 0. Caso isso aconteça, o número da substituição será raiz.
Substituindo x por + 2
x4 - 5x2 +4 = 0
24 – 5 . 22 + 4 = 0
16 - 20 + 4 = 0
16 – 16 = 0
0 = 0
Temos que +2 é solução da equação biquadrada.
Substituindo x por – 2
x4 - 5x2 +4 = 0
(-2)4 – 5 . ( - 2)2 + 4 = 0
+ 16 – 20 + 4 = 0
+ 16 – 16 = 0
0 = 0
O número –2 é solução da equação biquadrada.
Substituindo x por + 1
x4 - 5x2 +4 = 0
+14 – 5 . + 12 + 4 = 0
+1 – 5 + 4 = 0
- 4 + 4 = 0
0 = 0
+ 1 é solução da equação biquadrada.
Substituindo x por - 1
x4 - 5x2 +4 = 0
(-1)4 – 5 . (- 12) + 4 = 0
+1 – 5 . + 1 + 4 = 0
-4 + 4 = 0
0 = 0
O número -1 é solução da equação biquadrada.
Temos que todos os números {+2, -2, + 1, -1} são soluções da equação: x4 - 5x2 +4 = 0.