verifique se com essas medidas será possível formar um triângulo, e em caso afirmativo, classifique-a.
A)1,2,5.
B)3,4,5.
C)6,7,6.
D)3,2,4.
E)5,12,13.
F)5,4,6.
Soluções para a tarefa
AndradeNeto7,
Para que seja possível construir um triângulo, é necessário que a soma de 2 de seus lados seja maior que o terceiro lado. Então:
A) 1 + 2 = 3
3 < 5
Então, é impossível construir o triângulo.
(Para verificar essa impossibilidade, desenhe um segmento com 5 cm. Numa das extremidades, trace um arco de circunferência com o raio igual a 1 cm. Na outra extremidade, trace um arco de circunferência com o raio igual a 2 cm. Você vai verificar que estes dois arcos não se cruzam e, portanto, é impossível construir o triângulo.
B) 3 + 4 = 7
7 > 5
É possível construir o triângulo e, como os três lados são diferentes, o triângulo é escaleno.
C) 6 + 7 = 13
13 > 7
É possível construir o triângulo e, como 2 lados têm a mesma medida, o triângulo é isósceles.
D) 3 + 2 = 5
5 > 4
É possível construir o triângulo e ele é escaleno.
E) 5 + 12 = 17
17 > 13
É possível construir o triângulo e ele é escaleno.
F) 5 + 4 = 9
9 > 6
É possível construir o triângulo e ele é escaleno.