Matemática, perguntado por tessolin06, 10 meses atrás

verifique se a expressão \sqrt{x^{2} - y^{2} } é definida no conjunto R quando x= 13 e Y = -12
É URGENTEEEE VALENDO 100 PONTOS

Soluções para a tarefa

Respondido por Usuário anônimo
1

Explicação passo-a-passo:

Vamos substituir os valores de x e y:

 =  \sqrt{ {x}^{2} -  {y}^{2}  }

 =  \sqrt{1 {3}^{2}  - ( - 12 {)}^{2} }

 =  \sqrt{169 - 144}

 =  \sqrt{25}

 = 5

Portanto, é um número real.

Respondido por auditsys
3

Resposta:

S = { x ∈ R | x = 5 }

Explicação passo-a-passo:

\sqrt{x^2 - y^2}

\sqrt{(13)^2 - (-12)^2}

\sqrt{169 - 144}

\sqrt{25}

5

Perguntas interessantes