Matemática, perguntado por cristinedossantosema, 4 meses atrás

Verifique quais números são irracionais e quais não são.
 \sqrt{1}  \\  \sqrt{ 2} \\  \sqrt{3}  \\  \sqrt{4} \\  \sqrt{5}

Soluções para a tarefa

Respondido por Rafinhx7
3

Resposta:

Bom dia!!

Racional;

Irracional;

Irracional;

Racional;

Irracional;

Explicação passo-a-passo:

Basta nos perguntamos, "Que número vezes ele mesmo resulta em 1, 2, 3, 4... por aí vai, ja que 1 x 1 é 1, logo temos que a raiz quadrada de um é racional.

Espero ter ajudado!!

Bons estudos! ♡


deboraoh2110: Obrigada
Respondido por Sban1
2

Podemos concluir que a resposta correta é

Não é irracional

irracional

irracional

não é irracional

irracional

  • Mas, como chegamos nessa resposta ?

Para responder essa pergunta temos que saber o que são números irracionais

  • Números irracionais são número decimais, infinitos e não periódicos

Ou seja são número que possuem virgula, não tem fim é não tem um padrão de repetição

agora aqui vai uma dica para resolver essa questão rapido

geralmente raiz quadradas que não são exatas são números irracionais

Vamos a questão

\boxed{\sqrt{1} =  1}

a raiz de 1 não é um valor infinito nem decimal por isso raiz de 1 não é irracional

\boxed{\sqrt{2} =  1.41421356237....}

a raiz de 2 dá um valor infinito, decimal e não periódico por isso ele é irracional

\boxed{\sqrt{3} = 1.73205080757....}

a raiz de 3 dá um valor infinito, decimal e não periódico por isso ele é irracional

\boxed{\sqrt{4} =2}

a raiz de 4 não é um valor infinito nem decimal por isso raiz de 4 não é irracional

\boxed{\sqrt{5} =2.2360679775....}

a raiz de 5 dá um valor infinito, decimal e não periódico por isso ele é irracional

Então ficamos assim

Não é irracional

irracional

irracional

não é irracional

irracional

Link com exercício parecido:

https://brainly.com.br/tarefa/51228618

Anexos:
Perguntas interessantes