Matemática, perguntado por pamelarms, 1 ano atrás

Verifique as relações da matriz 3x3, algebricamente:

a) tr ([B]+[A]) = tr ([A]+ tr [B])
b) tr (C[a]) = C tr [A]
c) tr ([A][b]) = tr ([B][A])
d) tr ([A]-¹[B][a]) = tr ([b])

Soluções para a tarefa

Respondido por carlosmath
10
c) 
\displaystyle
\text{Sea }A=\ \textless \ a_{i,j}\ \textgreater \ \text{ con }1\leq i\leq 3\text{ y }1\leq j \leq 3\text{ y }\\
B=\ \textless \ b_{j,k}\ \textgreater \ \text{ con }1\leq j\leq 3\text{ y }1\leq k \leq 3\text{ y }\\ \\
AB=\ \textless \ AB_{i.k}\ \textgreater \  =\sum\limits_{j=1}^{3}a_{i,j}b_{j,k}\\ \\
tr(AB) = \sum\limits_{h=1}^3 \ \textless \ AB_{h,h}\ \textgreater \  =\sum\limits_{h=1}^3\sum\limits_{j=1}^{3}a_{h,j}b_{j,h}\\ \\
tr(BA) = \sum\limits_{h=1}^3 \ \textless \ BA_{h,h}\ \textgreater \  =\sum\limits_{h=1}^3\sum\limits_{j=1}^{3}b_{h,j}a_{j,h}\\ \\
tr(BA) = \sum\limits_{h=1}^3\sum\limits_{j=1}^{3}a_{j,h}b_{h,j}\\ \\

entonces tr(AB) = tr (BA)

d) Utilice (c)

tr(A^{-1}BA)=tr(A^{-1}[BA])=tr([BA]A^{-1})=tr(B[AA^{-1}])=tr(BI)\\ \\
tr(A^{-1}BA)=tr (B)


Perguntas interessantes