Vamos determinar o gráfico da função dada pela seguinte lei de formação:
f(x) = –x² + 4x – 3
Soluções para a tarefa
Resposta:
Para f(x) = x² - 4x + 3, temos que: as raízes são 1 e 3; o vértice e o ponto de mínimo são (2,-1); a imagem é [-1,∞); é crescente quando x > 2 e decrescente quando x < 2. Para f(x) = -x² + 12x + k ter duas raízes iguais, então k = -36.
1. Para calcular as raízes da função f(x) = x² - 4x + 3, vamos igualá-la a 0:
x² - 4x + 3 = 0.
Utilizando a fórmula de Bhaskara para resolver a equação do segundo grau acima:
Δ = (-4)² - 4.1.3
Δ = 16 - 12
Δ = 4
.
As raízes são 1 e 3.
b) O vértice da parábola é denominado por .
Portanto,
V = (2,-1).
c) O gráfico da função está anexado abaixo.
d) Como a concavidade da parábola é para cima, então a função admite valor mínimo, que é o vértice V = (2,-1).
e) A imagem da função é igual a [-1,∞).
Pelo gráfico, temos que:
f) a função é crescente quando x > 2;
g) é decrescente quando x < 2.
2. Para a função f(x) = -x² + 12x + k ter duas raízes reais iguais, então o valor de delta deverá ser 0:
Δ = 12² - 4.(-1).k
Δ = 144 + 4k.
Portanto,
144 + 4k = 0
k = -36.
Explicação passo-a-passo: espero ter ajudado