Matemática, perguntado por Usuário anônimo, 1 ano atrás

Valor da soma desta seguinte serie:
\sum_{n=1}^{\infty } \frac{-5}{9n^2+3n-2}

Soluções para a tarefa

Respondido por Niiya
2
Vamos encontrar as raízes de p(x)=9x^{2}+3x-2

\Delta=3^{2}-4\cdot9\cdot(-2)\\\Delta=9+72\\\Delta=81\\\\x=\dfrac{-3\pm\sqrt{81}}{2\cdot9}=\dfrac{-3\pm9}{2\cdot9}=\dfrac{-1\pm3}{6}

Então, as raízes de p(x) são

x_{1}=\dfrac{-1+3}{6}=\dfrac{1}{3}\\\\\\x_{2}=\dfrac{-1-3}{6}=-\dfrac{2}{3}

Com isso, podemos escrever p(x) como

p(x)=9x^{2}+3x-2=9(x-\frac{1}{3})(x+\frac{2}{3})\\\\p(x)=9(\frac{3x-1}{3})(\frac{3x+2}{3})\\\\\boxed{\boxed{p(x)=(3x-1)(3x+2)}}

Agora, nosso objetivo é encontrar números A e B tais que

\dfrac{1}{9x^{2}+3x-2}=\dfrac{A}{3x-1}+\dfrac{B}{3x+2}\\\\\\\dfrac{1}{9x^{2}+3x-2}=\dfrac{A(3x+2)+B(3x-1)}{(3x-1)(3x+2)}\\\\\\\dfrac{1}{9x^{2}+3x-2}=\dfrac{3Ax+2A+3Bx-B}{9x^{2}+3x-2}\\\\\\\dfrac{1}{9x^{2}+3x-2}=\dfrac{(3A+3B)x+(2A-B)}{9x^{2}+3x-2}

Isso ocorrerá se

\begin{cases}3A+3B=0~~\therefore~~A+B=0\\2A-B=1\end{cases}

Somando as equações, temos

A+2A+B-B=0+1\\\\3A=1~~\therefore~~\boxed{\boxed{A=\dfrac{1}{3}}}

Encontrando B:

A+B=0~~\therefore~~~B=-A~~\therefore~~\boxed{\boxed{B=-\dfrac{1}{3}}}

Então:

\dfrac{1}{9n^{2}+3n-2}=\dfrac{(\frac{1}{3})}{3n-1}-\dfrac{(\frac{1}{3})}{3n+2}

Logo:

\displaystyle\sum\limits_{n=1}^{k}\dfrac{-5}{9n^{2}+3n-2}=-5\sum\limits_{n=1}^{k}\dfrac{1}{9n^{2}+3n-2}\\\\\\\sum\limits_{n=1}^{k}\dfrac{-5}{9n^{2}+3n-2}=-5\sum\limits_{n=1}^{k}\bigg[\dfrac{(\frac{1}{3})}{3n-1}-\dfrac{(\frac{1}{3})}{3n+2}\bigg]\\\\\\\boxed{\boxed{\sum\limits_{n=1}^{k}\dfrac{-5}{9n^{2}+3n-2}=-\dfrac{5}{3}\sum\limits_{n=1}^{k}\bigg[\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\bigg]}}
_____________________________

Expandindo a soma \sum\limits_{n=1}^{k}\bigg[\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\bigg]}}, temos

S_{k}=\sum\limits_{n=1}^{k}\bigg[\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\bigg]}}=\\\\\\(\frac{1}{2}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{8})+(\frac{1}{8}-\frac{1}{11})+..+(\frac{1}{3k-4}-\frac{1}{3k-1})+(\frac{1}{3k-1}-\frac{1}{3k+2})

Note que todos os termos se cancelam, com exceção do primeiro e do último:

S_{k}=\dfrac{1}{2}-\dfrac{1}{3k+2}

Finalmente, temos, por definição, que

\displaystyle\sum\limits_{n=1}^{\infty}a_{n}=\lim\limits_{k\rightarrow\infty}\sum\limits_{n=1}^{k}a_{n}

se o limite existir. Então:

\displaystyle\sum\limits_{n=1}^{\infty}\dfrac{-5}{9n^{2}+3n-2}=\lim\limits_{k\rightarrow\infty}-\dfrac{5}{3}\bigg[\dfrac{1}{2}-\dfrac{1}{3k+2}\bigg]

Quando n\rightarrow\infty3k+2\rightarrow\infty~~\Rightarrow~~\frac{1}{3k+2}\rightarrow0

\displaystyle\sum\limits_{n=1}^{\infty}\dfrac{-5}{9n^{2}+3n-2}=\lim\limits_{k\rightarrow\infty}-\dfrac{5}{3}\bigg[\dfrac{1}{2}-\dfrac{1}{3k+2}\bigg]\\\\\\\sum\limits_{n=1}^{\infty}\dfrac{-5}{9n^{2}+3n-2}=-\dfrac{5}{3}\bigg[\dfrac{1}{2}-0\bigg]\\\\\\\sum\limits_{n=1}^{\infty}\dfrac{-5}{9n^{2}+3n-2}=-\dfrac{5}{3}\cdot\dfrac{1}{2}\\\\\\\boxed{\boxed{\sum\limits_{n=1}^{\infty}\dfrac{-5}{9n^{2}+3n-2}=-\dfrac{5}{6}}}
Perguntas interessantes