Matemática, perguntado por edhenri40, 4 meses atrás

valor da integral
3 2
∫ ∫ ₍ x . y ₎ dy dx
0 0

Soluções para a tarefa

Respondido por Nasgovaskov
0

Resposta:

Obs.: lembre-se do teorema fundamental do cálculo, no qual:

\boxed{\int\limits^{\sf b}_{\sf a}\sf f(x)\,dx=F(x)\bigg|^{\sf b}_{\sf a}=F(b)-F(a)}

\sf V=\displaystyle\int\limits^{\sf3}_{\sf0}\displaystyle\int\limits^{\sf2}_{\sf0}\sf(x\cdot y)\,dydx

Integrando em relação a y primeiro (considere x uma constante):

\sf V=\displaystyle\int\limits^{\sf3}_{\sf0}\Bigg[\sf x\cdot\displaystyle\int\limits^{\sf2}_{\sf0}\sf(y)\,dy\Bigg]dx

\sf V=\displaystyle\int\limits^{\sf3}_{\sf0}\Bigg[\sf x\cdot\bigg|\displaystyle\int\sf(y)\,dy\:\bigg|^{\sf2}_{\sf0}\Bigg]dx

\sf V=\displaystyle\int\limits^{\sf3}_{\sf0}\Bigg[\sf x\cdot\bigg|\dfrac{y^2}{2}\bigg|^{\sf2}_{\sf0}\Bigg]dx

\sf V=\displaystyle\int\limits^{\sf3}_{\sf0}\bigg[\sf x\cdot\bigg(\dfrac{2^2}{2}-\dfrac{0^2}{2}\bigg)\bigg]dx

\sf V=\displaystyle\int\limits^{\sf3}_{\sf0}\bigg[\sf x\cdot\bigg(\dfrac{4}{2}-\dfrac{0}{2}\bigg)\bigg]dx

\sf V=\displaystyle\int\limits^{\sf3}_{\sf0}\big[\sf x\cdot(2-0)\big]dx

\sf V=\displaystyle\int\limits^{\sf3}_{\sf0}(\sf 2x)\,dx

Por fim, integre em relação a x:

\sf V=\displaystyle\int\sf(2x)\,dx\:\bigg|^{\sf3}_{\sf0}

\sf V=x^2\:\big|^{\sf3}_{\sf0}

\sf V=3^2-0^2

\sf V=9-0

\red{\boxed{\sf V=9}}\rightarrow\sf valor~da~integral.

Perguntas interessantes