VALE 40 PONTOS
resolva, em R, as seguintes equações:
Soluções para a tarefa
Olá!
a) 4x² - 12x + 9 =0
(2x -3)* (2x-3) = 0
2x- 3= 0
2X= 3
X= 3/2
Solução (3/2)
b) 9X² -24X+16 =0
(3X - 4)*(3X-4) =0
3X- 4= 0
3X= 4
X= 4/3
Solução: (4/3)
c) X² -12X + 3 =0
a=1
b= -12
c= 3
Δ= b² -4ac
Δ= (-12)² - 4 * 1 *3
Δ= 144 - 12
Δ= 132
x= -b±√Δ/2a
x= (-(-12) ±√132)/ 2*1
x= (12±2√33)/ 2
x'= (12+2√33)/2
x'= 6+√33
x"= (12-2√33)/2
x"= 6 -√33
Solução: (6+√33; 6-√33)
d)x² -x -2= 0
(x-2)*(x+1)=0
x-2= 0
x= 2
x+1= 0
x= -1
Solução: (-1,2)
e) -x²+2x+15=0
(-x-3)*(x-5)=0
-x-3= 0
x= -3
x-5= 0
x=5
Solução: (-3,5)
f) 4(x²)² -5x²+1=0
x²= y
4y² - 5y+1 = 0
(4y-1)*(y-1)=0
4y- 1= 0
4y= 1
y= 1/4
y-1= 0
y=1
x²= y
x²= 1
x= ±√1
x= ±1
x²=y
x² = (1/4)
x= ±√(1/4)
x= ±1/2
Solução: (1/2 ; -1/2; -1; 1)
g) (x²)²-8x²+15
x² =y
y² - 8y + 15
(y-3)*(y-5)=0
y-3= 0
y= 3
y-5= 0
y=5
x²= y
x²= 3
x= ±√3
x²= y
x²= 5
x= ±√5
Solução: (-√5, -√3, √5, √3)
h) (x²)² -36x² =0
x²=y
y² - 36y = 0
y*(y- 36)=0
y= 0
y-36=0
y= 36
x²=y
x²= 0
x=√0
x= 0
x²= y
x²=36
x= ±√36
x= ±6
Solução: (-6, 0 , 6)
i) (√(5x+9))² = (x-1)²
5x +9= x² - 2x +1
-x²+7x+8= 0
a= -1
b= 7
c=8
Δ= b²-4ac
Δ= 7² - 4*-1*8
Δ= 49 +32
Δ= 81
x= -b±√Δ/2a
x= (-7 ±√81)/ 2*-1
x= (-7±9/ -2
x'= (-7+9)/-2
X'= 2/-2= -1
x"= (-7-9)/-2
X"= -16/-2
X"=8
Solução: (-1,8)
j) √(8x+4)² = √(5x+16)²
8x+4= x+16
8x-x= 16-4
7x= 12
x= 12/7
solução: (12/7)
Bons estudos!
T.H.S.G.
4x²—12x+9=0
∆=(-12)²—4•4•9
∆=144—144
∆=0
x'ex'' = (12±0)/2•4
x'ex''=12/8=3/2
B)
9x²—24x+16=0
∆=(-24)²—4•9•16
∆=576—576
∆=0.
x'ex''=(24±0)/2•9
x'ex''=24/18
x'ex'' = 4/3
C)
x²—12x+3=0
∆=(-12)²—4•1•3
∆=144—12
∆=136
x'ex'' = (12±√136)/2•1
x'ex'' = (12±√136)/2
x'ex'' = 6±√136
D)
x²—x—2=0
∆=(-1)²—4•1•(-2)
∆=1+8
∆=9
x'ex'' = ( 1±√9)/2•1
x'ex'' = (1±3)/2
x' = (1+3)/2 = 4/2 = 2
x'' = (1-3)/2 = -2/2 = -1
E)
—x²+2x+15=0
∆=2²—4•(-1)•15
∆=4+60
∆=64
x' = (-2+8)/2•(-1)
x' = 6/-2 = -3
x'' = (-2-8)/2•(-1)
x'' = -10/-2 = 5
F)
4x⁴—5x²+1=0
4(x²)²—5x²+1=0
Seja: x²=t
4t²—5t+1=0
∆ = (-5)²—4•4•1
∆ = 25—16
∆ = 9
t' = ( 5+3)/2•4
t'= 8/8 = 1
t'' = (5-3)/2•4
t'' = 2/8 = 1/4
x'ex''=±√t'. /\ x'''ex''''=±√t''
x'ex''=±√1=±1/\x'''ex''''=±√1/4
G)
x⁴—8x²+15=0
(x²)²—8x²+15=0
Seja x²=t
t²—8t+15=0
∆=(-8)²—4•1•15
∆=64—60
∆=4
t' = ( 8+2)/2•1
t' = 10/2 = 5
t'' = (8-2)/2•1
t'' = 6/2 = 3
x' e x'' = ±√t' /\ x''' e x''''=±√t''
x' e x'' = ±√5/\ x''' e x''''=±√3
H)
x⁴—36x²=0
(x²)²—3x²=0
Seja: x²=t
t²—36t=0
t(t—36)=0
t=0 /\ t=36
x' e x''=±√t'. /\x'''ex''''=±√t''
x'ex''=±√0=0 /\x'''ex''''=±√36=±6
I)
√(5x+9)=x—1
[√(5x+9)]² = (x—5)²
5x+9 = x²—2•x•5+5²
5x+9 = x²—10x+25
x²—10x+25=5x+9
x²—10x—5x+25—9=0
x²—15x+16=0
∆=(-15)²—4•1•16
∆=225—64
∆=161
x' e x''= ( 15±√161)/2•1
x'ex'' = (15±√161)/2
I)
√(8x+4)=√(5x+16)
[√(8x+4)]²=[√(5x+16)]²
8x+4 = 5x+16
8x—5x = 16—4
3x = 12
x = 12/3
x = 4