Matemática, perguntado por ediscipuladejep5z78l, 1 ano atrás

(v25)^-x^2+3x >=(v25)^-10

Soluções para a tarefa

Respondido por lavinnea
5
( \sqrt{25} )^{-x^2+3x} \geq ( \sqrt{25} )^{-10} \\  \\ 5^{-x^2+3x} \geq 5^{-10} \\  \\ -x^2+3x \geq -10 \\  \\ -x^2+3x+10 \geq 10 

 resolver a equação do 2° grau

a=-1
b=3
c=10

Δ=b²-4ac
Δ= 3²-4(-1)(10)
Δ=9+40
Δ=49

x= \frac{-b\pm \sqrt{\Delta} }{2a} =~~ \frac{-3\pm \sqrt{49} }{-2} = \frac{-3\pm7}{-2}  \\  \\ x'= \frac{-3-7}{-2} = \frac{-10}{-2} =5 \\  \\ x"= \frac{-3+7}{-2} = \frac{+4}{-2} =-2

---^---\bullet^{-2}--^+--\bullet^5--^---- 

como foi pedido maior ou igual é o intervalo entre -2 e 5


S=\{x\in R/-2 \leq x \leq 5\}


lavinnea: blz!!!
lavinnea: Valeu pela melhor resposta ♥
ediscipuladejep5z78l: Obrigada!
Perguntas interessantes