Matemática, perguntado por Airtonbardalez, 9 meses atrás

Utilize a regra de derivação para determinar:

Anexos:

Soluções para a tarefa

Respondido por Makaveli1996
2

Oie, Td Bom?!

f(x) =  \frac{ \sqrt[3]{x}  + 5x}{ \sqrt{x} }

f'(x) =  \frac{d}{dx} ( \frac{  \sqrt[3]{x} + 5x  }{ \sqrt{x} } )

f'(x) =  \frac{d}{dx} ( \frac{x {}^{ \frac{1}{3} }  + 5x}{ \sqrt{x} } )

f'(x) =  \frac{d}{dx} ( \frac{x {}^{ \frac{1}{3} }  + 5x}{ \sqrt{x} }  \: . \:  \frac{ \sqrt{x} }{ \sqrt{x} } )

f'(x) =  \frac{d}{dx} ( \frac{(x {}^{ \frac{1}{3} }  + 5x) \sqrt{x} }{ \sqrt{x} \sqrt{x}  } )

f'(x) =  \frac{d}{dx} ( \frac{(x {}^{ \frac{1}{3} }  + 5x) \sqrt{x} }{ x} )

f'(x) =  \frac{d}{dx} ( \frac{x {}^{ \frac{1}{3}  } \: . \: (1 + 5x {}^{ \frac{2}{3} } )x {}^{ \frac{1}{2} }  }{x} )

f'(x) =  \frac{d}{dx} ( \frac{(1 + 5x {}^{ \frac{2}{3} } )x {}^{ \frac{1}{2} } }{x {}^{1 -  \frac{1}{3} } } )

f'(x) =  \frac{d}{dx} ( \frac{(1 + 5x {}^{ \frac{2}{3}  } )x {}^{ \frac{1}{2} } }{x {}^{ \frac{2}{3} } } )

f'(x) = \frac{d}{dx}  ( \frac{1 + 5x {}^{ \frac{2}{3} } }{x {}^{ \frac{2}{3} -  \frac{1}{2}  } } )

f'(x) =  \frac{d}{dx} ( \frac{1 + 5x {}^{ \frac{2}{3} } }{x {}^{ \frac{1}{6} } } )

f'(x) =  \frac{d}{dx} ( \frac{1}{x {}^{ \frac{1}{6} } }  +  \frac{5x {}^{ \frac{2}{3} } }{x {}^{ \frac{1}{6} } } )

f'(x) =  \frac{d}{dx} ( \frac{1}{x {}^{ \frac{1}{6} } }  + 5 x{}^{ \frac{2}{3}  -  \frac{1}{6} } )

f'(x) =  \frac{d}{dx} ( \frac{1}{x {}^{ \frac{1}{6} } }  + 5x {}^{ \frac{1}{2} } )

➭Usando a Regra da Derivação:

 \frac{d}{dx} (f + g) =  \frac{d}{dx} (f) +  \frac{d}{dx} (g)

f'(x) =  \frac{d}{dx} ( \frac{1}{x {}^{ \frac{1}{6} } } ) +  \frac{d}{dx} (5x {}^{ \frac{1}{2} } )

f'(x) =  -  \frac{ \frac{d}{dx}(x {}^{ \frac{1}{6} })  }{(x {}^{ \frac{1}{6} }) {}^{2}  }  + 5 \: . \:  \frac{d}{dx} (x {}^{ \frac{1}{2} } )

f'(x) =  -  \frac{ \frac{1}{6} x {}^{ -  \frac{5}{6} } }{(x {}^{ \frac{1}{6} }) {}^{2}  }  + 5 \: . \:  \frac{1}{2} x {}^{ -  \frac{1}{2} }

f'(x) =  -  \frac{ \frac{1}{6} x {}^{ -  \frac{5}{6} } }{x {}^{ \frac{1}{3} } }  + 5 \: . \:  \frac{1}{2}  \: . \:  \frac{1}{x {}^{ \frac{1}{2} } }

f'(x) =  -  \frac{ \frac{1}{6} }{x {}^{ \frac{7}{6} } }  +  \frac{5}{2x {}^{ \frac{1}{2} } }

f'(x) =  -  \frac{1}{6x {}^{ \frac{7}{6} } }  +  \frac{5}{2 \sqrt{x} }

f'(x) =  -  \frac{1}{6 \sqrt[6]{x {}^{7} } }  +  \frac{5}{2 \sqrt{x} }

f'(x) =  -  \frac{1}{6 \: . \:  |x|  \: . \:  \sqrt[6]{x} }  +  \frac{5}{2 \sqrt{x} }

f'(x) =  -  \frac{1}{6 \sqrt[6]{x}  \: . \:  |x| }  +  \frac{5}{2 \sqrt{x} }

• Sabendo que f'(3), então:

f'(3) =  -  \frac{1}{6 \sqrt[6]{3} \: . \:  |3|  }  +  \frac{5}{2 \sqrt{3} }

f'(3) =  -  \frac{1}{6 \sqrt[6]{3}  \: . \: 3}  +  \frac{5}{2 \sqrt{3} }  \: . \:  \frac{ \sqrt{3} }{ \sqrt{3} }

f'(3) =  -  \frac{1}{6 \sqrt[6]{3}  \: . \: 3}  +  \frac{5 \sqrt{3} }{2 \sqrt{3}  \sqrt{3} }

f'(3) =  -  \frac{1}{6 \sqrt[6]{3} \: . \: 3 }  +  \frac{5 \sqrt{3} }{2 \: . \: 3}

f'(3) =  -  \frac{1}{6 \sqrt[6]{3}  \: . \: 3}  +  \frac{5 \sqrt{3} }{6}

f'(3) =  -  \frac{1}{18 \sqrt[6]{3} }  +  \frac{5 \sqrt{3} }{6}

f'(3) =  -  \frac{1}{18 \sqrt[6]{3} }  \: . \:  \frac{ \sqrt[6]{3 {}^{5} } }{ \sqrt[6]{3 {}^{5} } }  +  \frac{5 \sqrt{3} }{6}

f'(3) =  -  \frac{1 \sqrt[6]{3 {}^{5} } }{18 \sqrt[6]{3} \sqrt[6]{3 {}^{5} }  }  +  \frac{5 \sqrt{3} }{6}

f'(3) =  -  \frac{ \sqrt[6]{3 {}^{5} } }{18 \sqrt[6]{3 \: . \: 3 {}^{5} } }  +  \frac{5 \sqrt{3} }{6}

f'(3) =  -  \frac{ \sqrt[6]{3{}^{5} } }{18 \sqrt[6]{3 {}^{6} } }  +  \frac{5 \sqrt{3} }{6}

f'(3) =  -  \frac{ \sqrt[6]{3 {}^{5} } }{18 \: . \: 3}  +  \frac{5 \sqrt{3} }{6}

f'(3) =  -  \frac{ \sqrt[6]{3 {}^{5} } }{54}  +  \frac{5 \sqrt{3} }{6}

f'(3) =   - \frac{ \sqrt[6]{243} }{54}  +  \frac{5 \sqrt{3} }{6}

f'(3)≈1,39712...

Att. Makaveli1996

Respondido por SrKoro56
0

Resposta:

1)  7 / 3

2) 2

3) 2

4) 0

5) 2

6) 12

Explicação passo-a-passo:

Perguntas interessantes