Utilizando o Teorema Fundamental do Cálculo, analise as integrais definidas e determine cada um delas:
Soluções para a tarefa
a)
de 1 a 9 ∫ 1/√x +x^(1/4) dx
de 1 a 9 ∫ x^(-1/2) +x^(1/4+1) /(1/4+1) dx
de 1 a 9[ (x^(1/2) /(1/2] +x^(5/4)/(5/4] dx
de 1 a 9[ 2*(x^(1/2) +(4/5)*x^(5/4)] dx
=[ 2*(9^(1/2) +(4/5)*9^(5/4)] - [ 2*(1^(1/2) +(4/5)*1^(5/4)]
=[ 2*3 +(4/5)*3^(5/2)] - [ 2 +4/5]
~ 15,670
b)
0 a 2 ∫√(2x) * (√x+√5) dx
0 a 2 ∫x√(2) + √(10x) dx
0 a 2 [ x²√(2)/2 +√(10)*(x)^(1/2+1)/(1/2+1)]
0 a 2 [ x²√(2)/2 +(2/3)*√(10) (x)^(3/2)]
=2²√(2)/2 +(2/3)*√(10) (2)^(3/2)
=2√2 +(2/3)* √(10) * (2)^(3/2) ~ 8.7912750
c)
1 a 32 ∫ (1+x^(2/5))/x^(1/3) dx
1 a 32 ∫ x^(-1/3) +x^(2/5-1/3 ) dx
1 a 32 ∫ x^(-1/3) +x^[(6-5 )/15] dx
1 a 32 ∫ x^(-1/3) +x^(1 /15] dx
1 a 32 [ x^(-1/3+1) /(-1/3+1)+ x^(16/15)/(16/15)]
1 a 32 [ (3/2)*x^(2/3) + (15/16)*x^(16/15)]
=[ (3/2)*32^(2/3) + (15/16)*32^(16/15)] -[ (3/2)*1^(2/3) + (15/16)*1^(16/15)]
~ 50,4791
Integral <<<
- A)
______________________________________
______________________________________
- B)
______________________________________
- C)
- Caso tenha dado bug veja pelo site >>> https://brainly.com.br/tarefa/41293088
- OU VEJA O ANEXO