utilizando o método da substituição para calcular a integral,
Anexos:
![](https://pt-static.z-dn.net/files/dd6/52bdf0a3a13536f57d6f12cf33e6c50e.jpg)
Soluções para a tarefa
Respondido por
3
Boa noite!
Solução!
![\displaystyle\int t \sqrt{ 7t^{2}+12 } dt \displaystyle\int t \sqrt{ 7t^{2}+12 } dt](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint+t+%5Csqrt%7B+7t%5E%7B2%7D%2B12+%7D+dt)
![u=7t^{2} +12\\\\\\
du=14tdt\\\\\
\dfrac{du}{14}=tdt
u=7t^{2} +12\\\\\\
du=14tdt\\\\\
\dfrac{du}{14}=tdt](https://tex.z-dn.net/?f=u%3D7t%5E%7B2%7D+%2B12%5C%5C%5C%5C%5C%5C%0Adu%3D14tdt%5C%5C%5C%5C%5C%0A+%5Cdfrac%7Bdu%7D%7B14%7D%3Dtdt+%0A)
![\displaystyle\int \frac{ \sqrt{u} }{14} du\\\\\\\\\\
\frac{1}{14}\displaystyle\int \sqrt{u}~ du \displaystyle\int \frac{ \sqrt{u} }{14} du\\\\\\\\\\
\frac{1}{14}\displaystyle\int \sqrt{u}~ du](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint++%5Cfrac%7B+%5Csqrt%7Bu%7D+%7D%7B14%7D+du%5C%5C%5C%5C%5C%5C%5C%5C%5C%5C%0A+%5Cfrac%7B1%7D%7B14%7D%5Cdisplaystyle%5Cint+%5Csqrt%7Bu%7D%7E+du)
![\dfrac{1}{14}\bigg(u\bigg)^{ \dfrac{1}{2} }\\\\\\\\
\dfrac{1}{14} \frac{\bigg(u\bigg)^{ \dfrac{1}{2} +1}}{ \dfrac{1}{2}+1 } \\\\\\\\\
\dfrac{1}{14} \frac{\bigg(u\bigg)^{ \dfrac{3}{2}}}{ \dfrac{3}{2} } \\\\\\\\\
\dfrac{1}{14}.\dfrac{2}{3}\bigg(u\bigg)^{ \dfrac{3}{2}}\\\\\\\
\dfrac{1}{21}\bigg(u\bigg)^{ \dfrac{3}{2}}\\\\\\\
\dfrac{1}{21}\bigg(7t^{2}+12 \bigg)^{ \dfrac{3}{2}}+c\\\\\\\
\displaystyle\int t \sqrt{ 7t^{2}+12 } dt= \dfrac{1}{21}\bigg(7t^{2}+12 \bigg)^{ \dfrac{3}{2}}+c \dfrac{1}{14}\bigg(u\bigg)^{ \dfrac{1}{2} }\\\\\\\\
\dfrac{1}{14} \frac{\bigg(u\bigg)^{ \dfrac{1}{2} +1}}{ \dfrac{1}{2}+1 } \\\\\\\\\
\dfrac{1}{14} \frac{\bigg(u\bigg)^{ \dfrac{3}{2}}}{ \dfrac{3}{2} } \\\\\\\\\
\dfrac{1}{14}.\dfrac{2}{3}\bigg(u\bigg)^{ \dfrac{3}{2}}\\\\\\\
\dfrac{1}{21}\bigg(u\bigg)^{ \dfrac{3}{2}}\\\\\\\
\dfrac{1}{21}\bigg(7t^{2}+12 \bigg)^{ \dfrac{3}{2}}+c\\\\\\\
\displaystyle\int t \sqrt{ 7t^{2}+12 } dt= \dfrac{1}{21}\bigg(7t^{2}+12 \bigg)^{ \dfrac{3}{2}}+c](https://tex.z-dn.net/?f=+%5Cdfrac%7B1%7D%7B14%7D%5Cbigg%28u%5Cbigg%29%5E%7B+%5Cdfrac%7B1%7D%7B2%7D+%7D%5C%5C%5C%5C%5C%5C%5C%5C%0A+%5Cdfrac%7B1%7D%7B14%7D+%5Cfrac%7B%5Cbigg%28u%5Cbigg%29%5E%7B+%5Cdfrac%7B1%7D%7B2%7D+%2B1%7D%7D%7B+%5Cdfrac%7B1%7D%7B2%7D%2B1+%7D+%5C%5C%5C%5C%5C%5C%5C%5C%5C+%0A%5Cdfrac%7B1%7D%7B14%7D+%5Cfrac%7B%5Cbigg%28u%5Cbigg%29%5E%7B+%5Cdfrac%7B3%7D%7B2%7D%7D%7D%7B+%5Cdfrac%7B3%7D%7B2%7D+%7D+%5C%5C%5C%5C%5C%5C%5C%5C%5C%0A+%5Cdfrac%7B1%7D%7B14%7D.%5Cdfrac%7B2%7D%7B3%7D%5Cbigg%28u%5Cbigg%29%5E%7B+%5Cdfrac%7B3%7D%7B2%7D%7D%5C%5C%5C%5C%5C%5C%5C%0A%5Cdfrac%7B1%7D%7B21%7D%5Cbigg%28u%5Cbigg%29%5E%7B+%5Cdfrac%7B3%7D%7B2%7D%7D%5C%5C%5C%5C%5C%5C%5C%0A%5Cdfrac%7B1%7D%7B21%7D%5Cbigg%287t%5E%7B2%7D%2B12+%5Cbigg%29%5E%7B+%5Cdfrac%7B3%7D%7B2%7D%7D%2Bc%5C%5C%5C%5C%5C%5C%5C%0A%5Cdisplaystyle%5Cint+t+%5Csqrt%7B+7t%5E%7B2%7D%2B12+%7D+dt%3D+%5Cdfrac%7B1%7D%7B21%7D%5Cbigg%287t%5E%7B2%7D%2B12+%5Cbigg%29%5E%7B+%5Cdfrac%7B3%7D%7B2%7D%7D%2Bc)
![\boxed{Resposta:\dfrac{1}{21}\bigg(7t^{2}+12 \bigg)^{ \dfrac{3}{2}}+c~~~~\boxed{Alternativa~~A}} \boxed{Resposta:\dfrac{1}{21}\bigg(7t^{2}+12 \bigg)^{ \dfrac{3}{2}}+c~~~~\boxed{Alternativa~~A}}](https://tex.z-dn.net/?f=%5Cboxed%7BResposta%3A%5Cdfrac%7B1%7D%7B21%7D%5Cbigg%287t%5E%7B2%7D%2B12+%5Cbigg%29%5E%7B+%5Cdfrac%7B3%7D%7B2%7D%7D%2Bc%7E%7E%7E%7E%5Cboxed%7BAlternativa%7E%7EA%7D%7D)
Boa noite!
Bons estudos!
Solução!
Boa noite!
Bons estudos!
Usuário anônimo:
Qualquer dúvida comente aqui!
Respondido por
0
Caso tenha problemas para visualizar a resposta experimente abrir pelo navegador https://brainly.com.br/tarefa/6714930
Perguntas interessantes
Química,
1 ano atrás
Biologia,
1 ano atrás
Matemática,
1 ano atrás
Geografia,
1 ano atrás
Administração,
1 ano atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás
Biologia,
1 ano atrás