Utilizando as regras dos produtos notáveis, calcule:
a) (a4 +m4) (a4 + m4)
b) (a3 + 6y3)²
c) (m2 + 2n3)²
d) (bc + 1/3a) (bc - 1/3a)
e) (3ab + 1)²
Soluções para a tarefa
Respondido por
1
Temos que:
![\mathsf{(a+b)^2=a^2+2ab+b^2}\\\\
\mathsf{(a-b)^2=a^2-2ab+b^2}\\\\
\mathsf{(a+b)(a-b)=a^2-b^2} \mathsf{(a+b)^2=a^2+2ab+b^2}\\\\
\mathsf{(a-b)^2=a^2-2ab+b^2}\\\\
\mathsf{(a+b)(a-b)=a^2-b^2}](https://tex.z-dn.net/?f=%5Cmathsf%7B%28a%2Bb%29%5E2%3Da%5E2%2B2ab%2Bb%5E2%7D%5C%5C%5C%5C%0A%5Cmathsf%7B%28a-b%29%5E2%3Da%5E2-2ab%2Bb%5E2%7D%5C%5C%5C%5C%0A%5Cmathsf%7B%28a%2Bb%29%28a-b%29%3Da%5E2-b%5E2%7D)
Resolvendo:
a)
![\mathsf{(a^4+m^4)(a^4+m^4)}\\\\
\mathsf{(a^4+m^4)^2}\\\\
\boxed{\mathsf{a^8+2a^4m^4+m^8}} \mathsf{(a^4+m^4)(a^4+m^4)}\\\\
\mathsf{(a^4+m^4)^2}\\\\
\boxed{\mathsf{a^8+2a^4m^4+m^8}}](https://tex.z-dn.net/?f=%5Cmathsf%7B%28a%5E4%2Bm%5E4%29%28a%5E4%2Bm%5E4%29%7D%5C%5C%5C%5C+%0A%5Cmathsf%7B%28a%5E4%2Bm%5E4%29%5E2%7D%5C%5C%5C%5C%0A%5Cboxed%7B%5Cmathsf%7Ba%5E8%2B2a%5E4m%5E4%2Bm%5E8%7D%7D)
b)
![\mathsf{(a^3-6y^3)^2}\\\\
\boxed{\mathsf{a^6-12a^3b^3+36b^6}} \mathsf{(a^3-6y^3)^2}\\\\
\boxed{\mathsf{a^6-12a^3b^3+36b^6}}](https://tex.z-dn.net/?f=%5Cmathsf%7B%28a%5E3-6y%5E3%29%5E2%7D%5C%5C%5C%5C%0A%5Cboxed%7B%5Cmathsf%7Ba%5E6-12a%5E3b%5E3%2B36b%5E6%7D%7D)
c)
![\mathsf{(m^2+2n^3)^2}\\\\
\boxed{\mathsf{m^4+4m^2n^3+4n^6}} \mathsf{(m^2+2n^3)^2}\\\\
\boxed{\mathsf{m^4+4m^2n^3+4n^6}}](https://tex.z-dn.net/?f=%5Cmathsf%7B%28m%5E2%2B2n%5E3%29%5E2%7D%5C%5C%5C%5C%0A%5Cboxed%7B%5Cmathsf%7Bm%5E4%2B4m%5E2n%5E3%2B4n%5E6%7D%7D)
d)
![\mathsf{\left( bc+\dfrac{1}{3}a \right)\left( bc-\dfrac{1}{3}a\right) }\\\\\\
\boxed{\mathsf{b^2c^2-\dfrac{1}{9}a^2}} \mathsf{\left( bc+\dfrac{1}{3}a \right)\left( bc-\dfrac{1}{3}a\right) }\\\\\\
\boxed{\mathsf{b^2c^2-\dfrac{1}{9}a^2}}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cleft%28+bc%2B%5Cdfrac%7B1%7D%7B3%7Da+%5Cright%29%5Cleft%28+bc-%5Cdfrac%7B1%7D%7B3%7Da%5Cright%29+%7D%5C%5C%5C%5C%5C%5C%0A%5Cboxed%7B%5Cmathsf%7Bb%5E2c%5E2-%5Cdfrac%7B1%7D%7B9%7Da%5E2%7D%7D)
e)
![\mathsf{(3ab+1)^2}\\\\
\boxed{\mathsf{9a^2b^2+6ab+1}} \mathsf{(3ab+1)^2}\\\\
\boxed{\mathsf{9a^2b^2+6ab+1}}](https://tex.z-dn.net/?f=%5Cmathsf%7B%283ab%2B1%29%5E2%7D%5C%5C%5C%5C%0A%5Cboxed%7B%5Cmathsf%7B9a%5E2b%5E2%2B6ab%2B1%7D%7D)
Resolvendo:
a)
b)
c)
d)
e)
Perguntas interessantes
Matemática,
11 meses atrás
Matemática,
11 meses atrás
Matemática,
11 meses atrás
História,
1 ano atrás
Química,
1 ano atrás